Tillamook County
 DEPARTMENT OF COMMUNITY DEVELOPMENT BUILDING, PLANNING \& ON-SITE SANITATION SECTIONS

Land of Cheese, Trees and Ocean Breeze

Floodway Development Permit \#851-21-000321-PLNG: Coulter

> NOTICE TO MORTGAGEE, LIENHOLDER, VENDOR OR SELLER: IRS 215 REQUIRES THAT IF YOU RECEIVE THIS NOTICE, IT MUST BE PROMPTLY FORWARDED TO THE PURCHASER

NOTICE OF ADMINISTRATIVE REVIEW
 Date of Notice: March 15, 2022

Notice is hereby given that the Tillamook County Department of Community Development is considering the following:

851-21-000321-PLNG: A review of a Floodway Development Permit for the placement of a proposed single-family dwelling near the Nestucca River. The subject property is accessed from Rueppell Avenue, a County local access road, and is designated as Tax Lot 4800, of Section 30BD of Township 4 South, Range 10 West of the Willamette Meridian, Tillamook County, Oregon. The property is located in the Pacific City/Woods Airpark (PCW-AP) Zone. The applicant is Ronald Coulter. The property owner is David Coulter.

Written comments received by the Department of Community Development prior to 4:00p.m. on March 29, 2022, will be considered in rendering a decision. Comments should address the criteria upon which the Department must base its decision. A decision will be rendered no sooner than the next business day, March 30, 2022.

Notice of the application, a map of the subject area, and the applicable criteria are being mailed to all property owners within 250 feet of the exterior boundaries of the subject parcel for which an application has been made and other appropriate agencies at least 14 days prior to this Department rendering a decision on the request.

A copy of the application, along with a map of the request area and the applicable criteria for review are available for inspection on the Tillamook County Department of Community Development website: https://www.co.tillamook.or.us/commdev/landuseapps and is also available for inspection at the Department of Community Development office located at 1510-B Third Street, Tillamook, Oregon 97141.

If you have any questions about this application, please call the Department of Community Development at 503-842-3408 Ext. 3301 or mjenck@co.tillamook.or.us

Sincerely,

Melissa Jenck, CFM, Land Use Planner II

[^0]1
1

REVIEW CRITERIA

ARTICLE III - ZONE REGULATIONS

TCLUO SECTION 3.510: FLOOD HAZARD OVERLAY ZONE

(1) The fill is not within a Coastal High Hazard Area.
(2) Fill placed within the Regulatory Floodway shall not result in any increase in flood levels during the occurrence of the base flood discharge.
(3) The fill is necessary for an approved use on the property.
(4) The fill is the minimum amount necessary to achieve the approved use.
(5) No feasible alternative upland locations exist on the property.
(6) The fill does not impede or alter drainage or the flow of floodwaters.
(7) If the proposal is for a new critical facility, no feasible alternative site is available.
(8) For creation of new, and modification of, Flood Refuge Platforms, the following apply, in addition to (14)(a)(1-4) and (b) (1-5):
i. The fill is not within a floodway, wetland, riparian area or other sensitive area regulated by the Tillamook County Land Use Ordinance.
ii. The property is actively used for livestock and/or farm purposes,
iii. Maximum platform size $=10 \mathrm{sq} \mathrm{ft}$ of platform surface per acre of pasture in use, or 30 sq ft per animal, with a $10-\mathrm{ft}$ wide buffer around the outside of the platform,
iv. Platform surface shall be at least 1 ft above base flood elevation,
v. Slope of fill shall be no steeper than 1.5 horizontal to 1 vertical,
vi. Slope shall be constructed and/or fenced in a manner so as to prevent and avoid erosion.

Conditions of approval may require that if the fill is found to not meet criterion (5), the fill shall be removed or, where reasonable and practical, appropriate mitigation measures shall be required of the property owner. Such measures shall be verified by a certified engineer or hydrologist that the mitigation measures will not result in a net rise in floodwaters and be in coordination with applicable state, federal and local agencies, including the Oregon Department of Fish and Wildlife.

Vicinity Map

Generated with the GeoMOOSE Printing Utilities

Zoning Map

Generated with the GeoMOOSE Printing Utilities

TILLAMOOK County Assessor's Summary Report
 Real Property Assessment Report

FOR ASSESSMENT YEAR 2021
March 10, 2022 1:44:05 pm

Comments: $\quad 04-09-04$ Changed land value to reflect residential trends for neighborhood. sm. 10/18/06 input inventory. gb 01/29/14 Reappraised land; tabled values. RBB

National Flood Hazard Layer FIRMette

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

B- $\frac{20.2}{17.5}$ Cross Sections with 1\% Annual Chance 17.5 Water Surface Elevation 8 - - - Coastal Transect
mu ${ }_{513}$ min Base Flood Elevation Line (BFE)
Limit of Study
$=$ Limit of Study
Jurisdiction Boundary
--- --- Coastal Transect Baseline
OTHER FEATURES \qquad

MAP PANELS
\square

Digital Data Available
No Digital Data Available

O
The pin displayed on the map is an approximate point selected by the user and does not represe an authoritative property location.

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards
The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on $3 / 10 / 2022$ at 4:42 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.
This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

National Wetlands Inventory
Coulter

March 10, 2022

Wetlands

Estuarine and Marine Deepwater
Estuarine and Marine Wetland

Freshwater Emergent Wetland
Freshwater Forested/Shrub Wetland
Freshwater Pond

This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

Lake
Other
Riverine

Tillamook County Department of Community Development 1510-B Third Street. Tillamook, OR 97141 | Tel: 503-842-3408 Fax: 503-842-1819 www.co.tillamook.or.us

PLANNING APPLICATION

Applicant '. (Check Box if Same as Property Owner)
Name: Fonald E.Coulternone: (509) 630.5518
Address: P.O. Box 2323

Email:
Request:

Addition to Delving

Type II
Type III
Type IV

Clerk's Instrument \#: \qquad
Authorization
This permit application does not assure permit approval. The applicant and/or property owner shall be responsible for obtaining any other necessary federal, state, and local permits. The applicant verifies that the information submitted is complete, accurate, and consistent with other information submitted with this application.

Tillamook County Department of Community Development 1510-B Third Street. Tillamook, OR 97141 | Tel: 503-842-3408 Fax: 503-842-1819 www.co.tillamook.or.us

PLANNING APPLICATION

Email:

Request: Addition to Dwelning

Clerk's Instrument \#: \qquad

Authorization

This permit application does not assure permit approval. The applicant and/or property owner shall be responsible for obtaining any other necessary federal, state, and local permits. The applicant verifies that the information submitted is complete, accurate, and consistent with other information submitted with this application.

COULTER ARCHITECTURE

David and Pattie Coulter, Single-family Residence Addition. 35465 Rueppell Ave. Pacific City, Oregon

MEMO

Melissa, My mailed in submittal is in two packages and includes the following:
(2) Sets of Architectural and Structural Drawings. See index

Photos of the existing building, so you would not have to visit the site. We are replacing the decks (in the same configuration) which are falling apart plus redoing the windows, doors and siding, and revising the entrance (eliminating the front stair.

Community Development checklist (I Assume you check the boxes.)

Spec sheet on the special Neopor insulation in case you are not familiar with it.
(2) bound books that include the following:

1-Project preamble:	Project description
2-Energy forms:	Additional Measures Selection form
3-Structural Calculations:	FORTE -Gravity plus Lateral computations.
4-Building Details:	Construction Details
5-Soils Report:	Morgan Civil Engineers

COULTER ARCHTECTURE

6-Property Surveyor:
Bayside Surveying, LLC

7-Project Specifications and catalogue cut sheets

The Hydraulics Analysis Report, dated March 30, 2021 was submitted to you previously, and forwarded to FEMA by you, per your request.

Color perspective renderings to help explain the project.

Utility statements showing connection and services to the property for Power, water and Sewer.

COULTER ARCHTECTURE

105 N. Emerson Street, Suite 201, Chelan, Washington Mail: P.O. Box 2323, Lake Chelan, WA 98816

Office: 509.630 .5518

COULTER ARCHITECTURE

David and Pattie Coulter, Single-family Residence Addition.

35465 Rueppell Ave. Pacific City, Oregon

Project preamble:

Energy forms:

Structural Calculations:

Building Details:

Soils Report:

Property Surveyor:

Project description

Additional Measures Selection form FORTE -Gravity plus Lateral computations.

Construction Details

Morgan Civil Engineers

Bayside Surveying, LLC

Project Specifications and catalogue cut sheets:

David M. Coulter, Single family residence addition. 35465 Rueppell, Pacific City, Oregon

PROJECT INDEX

PROJECT PREAMBLE:

PROJECT DRAWINGS INDEX:

A-0.1	Site Plan
A-1.1	First Floor Plan
A-1.2	Second Floor Plan
A-1.3	Door and Window Schedules and roof Plan
A-2.1	South and East Elevations
A-2.2	North and West Elevations
A-3.1	Sections
S-1.1	Foundation Planning
S-1.1a	Foundation Details
S-1.2	Second Floor Framing Plan
S-1.3	Roof Framing and SIP Panel Plan
S-1.4	Shear Wall Plans and Details
S-1.5	Structural Notes
E-1.1	First Floor Electrical Plan
E-1.2	Second Floor Electrical Plan

RESIDENTIAL ENERGY ADDITIONAL MEASURES SELECTION:

PROJECT SPECIFICATIONS:

Including Catalog Cuts

PROJECT ENCLOSURES:

By reference and previously submitted to Tillamook County Planning, and subsequently submitted to FEMA by Tillamook County:
Waterways Consulting, Inc. Hydraulics Analysis Report, dated March 30, 2021

David M. Coulter, Single family residence addition.
35465 Rueppell, Pacific City, Oregon

PROJECT PREAMBLE

Project Description:

This project includes an existing house, constructed approximately 30 years ago, with deferred maintenance, and the addition of a new Master suite in the rear yard, making this a four bedroom house with additional entertainment deck.

Existing House scope :

The existing house is a two story building with the first story built with Concrete Masonry Unit perimeter walls, containing 5 garage stalls. The second story is a three bedroom area of 1809 S.F. of finished space.
The scope of this phase is to provide new decks, replacing the preexisting in the same configuration and footprint as the existing decks. (see survey site plan.)
The exterior siding will be replaced with new siding, including any deterioration of the sub structure.
All windows and sliding doors will also be replaced with double glazed vinyl windows.
New aluminum garage doors, and a new front entrance replacing the existing exterior stair as the main entrance.

New Master Suite Addition scope:

The addition of a Master suite upper floor of 1606 S.f. of finished area and a large outdoor deck, both for entertaining and accommodating a large family. The first floor of the new addition is constructed of concrete up to the 16.6^{\prime} MSL elevation, providing a flood resistant first story. The first story consists of a two stall garage and a two stall carport, all configured to comply with the Hydrologists analysis to the flood criteria of FEMA. See the report from Waterways Consulting Inc. dated March 30, 2021

Design Criteria:

Tillamook land use Ordinance 3.510 (FH):
FEMA Flood way Zone AE (per Jake Hofeld, PE of Waterways Consulting, Inc.)
No scour or erosion is anticipated, and wave action should not be a consideration. (see attached email from Jake Hofeld, PE, dated April 14, 2021)

Hydraulics Analysis Report, prepared by Waterways Consultants, Inc, dated March 30, 2021 has been submitted to Tillamook County on April 19, 2021. This report establishes the viability of the finish lower floor set at elevation 13.0' MSL. The elevations are based on the topographic survey by Bayside Survey, Inc., by Dallas W. Esplin, dated October 13, 2020. (enclosed)

Flood level established at 16.6^{\prime} MSL per Tillamook County Planning Dept. (Specified NAVD 88)

5 - Construction Materials and Methods:

(d) All materials on the ground level are either concrete, or located above the 16.6' MSL level.
(E) The project maximizes the practice of minimizing flood water damage.
(f) All electrical, HVAC, and plumbing are located above (except for piping), and the elevator and its electronics and controllers are located at the top of the shaft of above 16.6 MSL. The elevator is also programmed to return to the upper floor when not is use.

6 - Specific standards for A Zones:

(b) The lower level of the building is not subject to any wave action nor is it anticipated to have any scouring or erosion, per the email from the Hydrologist, listed above. We don't anticipate any flood forces acting on the building.
We comply with (6) (b) (1) and (2), providing the required and appropriate openings as shown on the foundation Plan.

Project designed to the 2018 edition of the IRC and the Oregon designated building codes. Section R322.2 Flood Hazard areas (including A Zones)

R322.2.1 Elevation requirements, exception complying with R322.2.2 Enclosed areas below design flood elevation: This project is designed based on this exception, and the elevation of the first level is a product of the flood modeling done by Waterways Consulting, Inc. (See the referenced report.) Elevaqtion13.0' MSL is established by this report.

2,1- The lower lever is reserved for parking, building access, and storage.
2.2- Flood openings have been provided, see the foundation plan.

R322.2.3 Foundation design and construction: Hydrostatic forces are not a design factor based on the recommendations by Waterways Consulting, Inc. as per email enclosed.
The foundation design is based on the soils report from Morgan Civil Engineering, Inc., and based on that report, at the time of excavation, we will have Jason Morgan, PE look at the site for a final review and recommendations.

Section 3.335 (3) (1) of the PCW-AP Zone with the Airport Overlay Zone.

Section 3.565 call for two height zones, 33 ' in zone A and 37 feet in zone B. These are MSL numbers, and not building heights from grade.
Melissa Jenk provided an ariel photo of the airport depicting the boundaries of zones A \& B.
We aligned the GIS maps with this site and determined where these zone lines appeared on our site. These zone lines are depicted on our site plan drawing-----------
We submitted these boundary lines to Tillamook County on January 19, 2021, and received a response on January 20, 2021 approving these boundary lines.

Soils Considerations for founding:

The soil assessment is prepared by Morgan Civil Engineering, Inc, dated April 29, 2021, and specifies the soil bearing capacity of 1500 pounds per square foot. When this is modified on the drawings, this is also recommended by the engineer, or implemented by the Architect based on his judgment.

Jake Hofeld Wed, Apr 14, 1:08 PM (9 days ago)
to me

Hi Ron,

Given how shallow flooding would be at your property, I don't expect scour/erosion to be an issue.

Regarding the flood zone designation, assume this is a Zone A area (the AE is a subcategory of these zones). Therefore, wave action should not be a consideration.

Hope this helps.

Jake D. Hofeld PE/CWRE
Senior Engineer
Waterways Consulting, Inc.
503-528-4816
www.watways.com

Residential Energy Additional
 Measure Selection

Department of Consumer and Business Services
Building Codes Division
1535 Edgewater NW. Salem, Oregon
Mailing address: P.O. Box 14470, Salem, OR 97309-0404
503-378-4133 • Fax: 503-378-2322
Web: oregon.govibcd

Please select type of construction below; sign, date, and complete the entire form. Submit this form with

 your permit application or your project will be placed on hold until the required information is provided.New construction. All conditioned spaces within residential buildings must comply with Table N1101.1(1) and two additional measures (one numbered and one lettered) from Table N1101.1(2) on Page 2.
Additions. Additions to existing buildings or structures may be made without making the entire building or structure comply if the new additions comply with the requirements of this chapter. (N1101.3)
Large additions. Additions that are equal to or more than 40 percent of the existing building heated floor area or 600 square feet ($55 \mathrm{~m}^{2}$) in area, whichever is less, must comply with Table N1101.1(2) on Page 2. (N1101.3.1) (Note: You must select one numbered and one lettered measure.)Small additions. Additions that are less than 40 percent of the existing building heated floor area or less than 600 square feet ($55 \mathrm{~m}^{2}$) in area, whichever is less, must select one measure from Table N1101.1(2) on page 2 or comply with Table N1101.3 below. (N1101.3.2)
\square Exception: Additions that are less than 15 percent of existing building heated floor area or 200 square feet ($18.58 \mathrm{~m}^{2}$) in area, whichever is less, are not required to comply with Table N1101.1(2) or Table N1101.3.

Selected item number: \qquad Selected item letter:
Note: Depending on which Additional Megsums you have selected, there may be sub-options that you will have to specify. Check the appropriate b

Applicant's signature:

Print name: \qquad Coulter, 6 IA
VAL ME ASURES (SELECT ONE)
TABLE N1101.3 - SMALL ADDITION ADDITIONAL MEASURES (SELECT ONE)

\square	1	Increase the ceiling insulation of the existing portion of the home as specified in Table N1101.2.
\square	2	Replace all existing single-pane wood aluminum windows to the U-factor as specified in Table N1101,2.
\square	3	Insulate the floor system as specified in Table N1101.2 \& install 100 percent of permanently installed lighting fixtures as CFL, LED, or linear fluorescent or a minimum efficacy of 40 lumens per watt as specified in Section N1107.2.
\square	4	Test the entire dwelling with a blower door and exhibit no more than 6.0 air changes per hour @ 50 Pascals.
\square	5	Seal and performance test the duct system.
\square	6	Replace existing 78 percent AFUE or less gas furnace with a 92 percent AFUE or greater system.
\square	7	Replace existing electric radiant space heaters with a ductless mini split system with a minimum HSPF of 10.0.
\square	8	Replace existing electric forced air furnace with an air source hedpump with a minimum HSPF of 9.5.
\square	9	Replace existing water heater with a water heater meeting Conservation Measure D [Table N1101.1(2)].

TABLE N1101.1(2) ADDITIONAL MEASURES

	\square	1	High-efficiency walls
			Exterior walls - U-0.045/R-21 cavity insulation $+\mathrm{R}-5$ contimuous
		2	Upgraded features
			Exterior walls - U-0.057 / R-23 intermediate or R-21 advanced, Framed floors - U-0.026 / R-38, and Windows - U-0.28 (average UA)
	\square	3	Upgraded features
			Exterior walls - U-0.055 / R-23 intermediate or R-21 advanced, Flat ceiling - U-0.017/R-60, and Framed floors - U-0.026 i R-38
	\square	4	Super Insulated Windows and Attic OR Framed Fioors
			Windows - U-0.22 (Triple Pane Low-e), and Flat ceiling ${ }^{\text {e }}$ - U-0.017 / R-60 or Framed floors - U-0.026 / R-38
	\square	5	Air sealing bome and ducts
			Mandatory air sealing of all wall coverings at top plate and air sealing checklist ${ }^{t}$, and Mechanical whole-building ventilation system with rates meeting M1507.3 or ASHRAE 62.2, and All ducts and air handlers contained within building envelope ${ }^{\text {d }}$ or All ducts sealed with mastic ${ }^{\text {b }}$
	\square	6	High efficiency thermal envelope UA ${ }^{\text {B }}$
			Proposed UA is 8% lower than the code UA
	\square	A	High efficicncy HVAC system ${ }^{\text {a }}$
			Gas-fired furnace or boiler AFUE 94 percent, or Air source heat pump HSPF 9.5/15.0 SEER cooling, or Ground source heat pump COP 3.5 or Energy Star rated
	\square	B	Ducted HVAC systems within conditioned space
			All ducts and air handlers contained within building envelope ${ }^{d}$ Cannot be combined with Measure 5
		C	Ductless heat pump
			Ductless heat pump HSPF 10.0 in primary zone of dwelling
	x	D	High efficiency water heater ${ }^{\text {c }}$
			Natural gas/propane water heater with UEF 0.85 or Electric heat pump water heater Tier 1 Northern Climate Specification Product

For SI: I square foot $=0.093 \mathrm{~m}^{2}, 1$ watt per square foot $=10.8 \mathrm{~W} \mathrm{~m}^{2}$.
a. Appliances located within the buiding thermal envelope shall have sealed combustion air installed. Combustion air shall be ducted directly from the outdoors.
b. All duct joints and seams sealed with listed mastic; tape is allowed only at appliance or equipment connections (for service and replacement). Meet sealing criteria of Performance Tested Comfort Systems program administered by the Bonneville Power Administration (BPA).
c. Residential water heaters less than 55 -gallon storage volume.
d. A total of 5 percant of an HVAC system's ductwork shall be permitted to be located outside of the conditioned space. Ducts located outside the conditioned space shall have insulation installed as required in this code.
e. The maximum vaulted ceiling surface area shall not be greater than 50 percent of the total heated space floor area uriess vatited area has a U-factor no greater than U-0.026.
f. Continuous air barrier. Additional requircment for saling of all interior vertical wall covering to top plate framing. Sealing with foam gasket, caulk, or other approved sealant listed for sealing wall covering material to structumal material (example: gypsum board to wood stad framing).
g. Table NIIO4.1(1) Standard base case design, Code UA shall be at least 8 percent less than the Proposed UA. Buildings with fenestration less than 15 percent of the total vertical wall area, these buildings may adjust the Code UA to have 15 percent of the wall area as fenestration.

Level			
Member Name	Results	Current Solution	Comments
Carport Beam B1	Passed	1 piece(s) $51 / 8^{\prime \prime} \times 131 / 2^{\prime \prime} 24 F-V 4$ DF Glulam	
Floor: Flush Beam B2	Passed	2 piece(s) $13 / 4^{\prime \prime} \times 91 / 4^{\prime \prime} 2.0$ E Microllam® LVL	
Garage Beam B3	Passed	1 piece(s) $51 / 8^{\prime \prime} \times 131 / 2^{\prime \prime} 24 F-V 4$ DF Glulam	
Garage Beam B4	Passed	1 piece(s) $51 / 8^{\prime \prime} \times 131 / 2^{\prime \prime} 24 F-V 4$ DF Glulam	
Deck Beam B5	Passed	1 piece(s) $31 / 8^{\prime \prime} \times 18^{\prime \prime} 24 \mathrm{~F}-\mathrm{V} 4$ DF Glulam	
Deck Beam B6	Passed	1 piece(s) $51 / 8^{\prime \prime} \times 131 / 2^{\prime \prime} 24 F-V 4$ DF Glulam	
Deck Beam B7	Passed	1 piece(s) $31 / 8^{\prime \prime} \times 131 / 2^{\prime \prime} 24 F-V 4$ DF Glulam	
Deck Beam B8	Passed	1 piece(s) $31 / 8^{\prime \prime} \times 131 / 2^{\prime \prime} 24 F-V 4$ DF Glulam	
Garage Beam B9	Passed	2 piece(s) $13 / 4^{\prime \prime} \times 91 / 4^{\prime \prime} 2.0$ E Microllam® LVL	
Garage Door Header H-6	Passed	2 piece(s) $13 / 4^{\prime \prime} \times 91 / 4^{\prime \prime} 2.0$ E Microllam® LVL	
Deck Beam B11	Passed	2 piece(s) $13 / 4^{\prime \prime} \times 91 / 2^{\prime \prime} 2.0$ E Microllam® LVL	
Deck Beam B17	Passed	1 piece(s) $31 / 8^{\prime \prime} \times 18^{\prime \prime} 24 \mathrm{~F}-\mathrm{V} 4$ DF Glulam	
Deck Beam B18	Passed	1 piece(s) $31 / 8^{\prime \prime} \times 18^{\prime \prime} 24 \mathrm{~F}-\mathrm{V} 4$ DF Glulam	
Roof			
Member Name	Results	Current Solution	Comments
Roof Beam B-10	Passed	1 piece(s) $51 / 8^{\prime \prime} \times 18{ }^{\prime \prime} 24 F-$ V8 DF Glulam	
H-1	Passed	2 piece(s) $13 / 4^{\prime \prime} \times 111 / 4^{\prime \prime} 2.0 \mathrm{E}$ Microllam® LVL	
H-2	Passed	2 piece(s) $13 / 4^{\prime \prime} \times 111 / 4^{\prime \prime} 2.0$ E Microllam® LVL	
H-3	Passed	2 piece(s) 2×10 DF No. 1	
H-4	Passed	2 piece(s) 2×8 DF No. 1	
H-5	Passed	2 piece(s) 2×8 DF No. 1	
H-6	Passed	2 piece(s) $13 / 4^{\prime \prime} \times 91 / 2^{\prime \prime} 2.0$ E Microllam® LVL	
Existing House			
Member Name	Results	Current Solution	Comments
Deck Beam B12	Passed	1 piece(s) $31 / 8^{\prime \prime} \times 18^{\prime \prime} 24 \mathrm{~F}-\mathrm{V} 8$ DF Glulam	
Ridge Beam B13	Passed	1 piece(s) $51 / 8^{\prime \prime} \times 101 / 2^{\prime \prime} 24 F-V 8$ DF Glulam	
Gable Beam B14	Passed	1 piece(s) $51 / 8^{\prime \prime} \times 161 / 2^{\prime \prime} 24 F-V 4$ DF Glulam	
Deck Beam B15	Passed	2 piece(s) $13 / 4^{\prime \prime} \times 18^{\prime \prime} 2.0 \mathrm{E}$ Microllam® LVL	
Deck Beam B16	Passed	1 piece(s) $51 / 8^{\prime \prime} \times 18^{\prime \prime} 24 \mathrm{~F}-\mathrm{V} 8$ DF Glulam	

ForteWEB Software Operator	Job Notes
Ron Coulter	
Coulter Architects PLLC	
(509) $630-5518$ rkent.architecture@gmail.com	

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	18506 @ $12^{\prime} 6^{\prime \prime}$	$18322\left(5.50^{\prime \prime}\right)$	Passed (101\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (Ibs)	$7605 @ 13^{\prime} 101 / 4^{\prime \prime}$	12223	Passed (62\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Pos Moment (Ft-lbs)	15286 @ $19^{\prime} 77 / 8^{\prime \prime}$	31134	Passed (49\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (Alt Spans)
Neg Moment (Ft-lbs)	$-22515 @ 12^{\prime} 6^{\prime \prime}$	23999	Passed (94\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.132 @ 6^{\prime} 13 / 16^{\prime \prime}$	0.304	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0$ L (Alt Spans)
Total Load Defl. (in)	$0.185 @ 5^{\prime} 103 / 4^{\prime \prime}$	0.608	Passed (L/788)	--	$1.0 \mathrm{D}+1.0$ L (Alt Spans)

System : Floor
Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length $L=10^{\prime} 5 / 16^{\prime \prime}$.
- Critical negative moment adjusted by a volume factor of 1.00 that was calculated using length $L=6^{\prime} 1^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			Accessories
	Total	Available	Required	Dead	Floor Live	Total	
1 - Column - DF	5.50"	4.25"	$1.91{ }^{\prime \prime}$	2431	4073/-473	$\begin{gathered} 6504 /- \\ 473 \end{gathered}$	1 1/4" Rim Board
2 - Column - DF	5.50 "	5.50 "	5.56"	7556	10950	18506	None
3 - Column - DF	5.50"	4.25"	1.91"	2431	4073/-473	$\begin{gathered} 6504 /- \\ 473 \end{gathered}$	1 1/4" Rim Board

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$24^{\prime} 10^{\prime \prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$24^{\prime} 10^{\prime \prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	$\mathbf{(0 . 9 0)}$	$\mathbf{(1 . 0 0)}$	Comments
0 - Self Weight (PLF)	$11 / 4^{\prime \prime}$ to $24^{\prime} 103 / 4^{\prime \prime}$	N/A	16.8	--	
1 - Uniform (PSF)	0 to 25^{\prime} (Front)	12^{\prime}	40.0	60.0	Default Load

Weyerhaeuser Notes

 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Ron Coulter	
Coulter Architects PLLC	
(509) $630-5518$	
rkent.architecture@gmail.com	

Level, Floor: Flush Beam B2
2 piece(s) 1 3/4" x 9 1/4" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2538 @ $4^{\prime \prime}$	$9297\left(4.25^{\prime \prime}\right)$	Passed (27\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$2089 @ 1^{\prime} 23 / 4^{\prime \prime}$	6151	Passed (34\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	7493 @ $6^{\prime} 51 / 2^{\prime \prime}$	11204	Passed (67\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.303 @ 6^{\prime} 51 / 2^{\prime \prime}$	0.306	Passed (L/486)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Total Load Defl. (in)	$0.465 @ 6^{\prime} 51 / 2^{\prime \prime}$	0.613	Passed (L/316)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Floor Live	Total	
1-Stud wall - DF	5.50"	4.25"	1.50"	900	1679	2579	$11 / 4^{\prime \prime}$ Rim Board
2 - Stud wall - DF	$5.50{ }^{\text {" }}$	4.25"	1.50 "	900	1679	2579	11/4" Rim Board

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$12^{\prime} 9^{\prime \prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$12^{\prime \prime} 9^{\prime \prime} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	$\mathbf{(0 . 9 0)}$	$\mathbf{(1 . 0 0)}$	Comments
0 - Self Weight (PLF)	$11 / 4^{\prime \prime}$ to $12^{\prime} 93 / 4^{\prime \prime}$	N / A	9.4	--	
1 - Uniform (PSF)	0 to $12^{\prime} 11^{\prime \prime}$ (Front)	$6^{\prime} 6^{\prime \prime}$	20.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Ron Coulter	
Coulter Architects PLLC	
(509) $630-5518$	
rkent.architecture@gmail.com	

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	6268 @ 2"	$11211\left(3.50^{\prime \prime}\right)$	Passed (56\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (Ibs)	4992 @ $1^{\prime} 5^{\prime \prime}$	12223	Passed (41\%)	1.00	$1.0 \mathrm{D}+1.0$ L (All Spans)
Pos Moment (Ft-lbs)	20776 @ $6^{\prime} 111 / 2^{\prime \prime}$	31134	Passed (67\%)	1.00	$1.0 \mathrm{D}+1.0$ L (All Spans)
Live Load Defl. (in)	0.275 @ $6^{\prime} 111 / 2^{\prime \prime}$	0.453	Passed (L/592)	--	$1.0 \mathrm{D}+1.0$ L (All Spans)
Total Load Defl. (in)	$0.365 @ 6^{\prime} 111 / 2^{\prime \prime}$	0.679	Passed (L/447)	--	$1.0 \mathrm{D}+1.0$ L (All Spans)

System : Floor
Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length $\mathrm{L}=13^{\prime} 7^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length				Loads to Supports (Ibs)		
	Total	Available	Required	Dead	Floor Live	Total	
1-Stud wall - DF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$1.96^{\prime \prime}$	1537	4732	6269	Blocking
2 - Stud wall - DF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$1.96^{\prime \prime}$	1537	4732	6269	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$13^{\prime} 11^{\prime \prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$13^{\prime} 11^{\prime \prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live $\mathbf{(1 . 0 0)}$	Comments
0 - Self Weight (PLF)	0 to $13^{\prime} 11^{\prime \prime}$	N/A	16.8	--	
1 - Uniform (PSF)	0 to $13^{\prime} 11^{\prime \prime}$ (Front)	17^{\prime}	12.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Ron Coulter	
Coulter Architects PLLC	
(509) $630-5518$	
rkent.architecture@gmail.com	

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (Ibs)	10589 @ $15^{\prime} 81 / 4^{\prime \prime}$	$11211\left(3.50^{\prime \prime}\right)$	Passed (94\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	6668 @ $14^{\prime} 5^{\prime \prime}$	12223	Passed (55\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Pos Moment (Ft-lbs)	25406 @ $7^{\prime} 81 / 8^{\prime \prime}$	31134	Passed (82\%)	1.00	$1.0 \mathrm{D}+1.0$ L (Alt Spans)
Neg Moment (Ft-lbs)	$-12765 @ 15^{\prime} 81 / 4^{\prime \prime}$	23999	Passed (53\%)	1.00	$1.0 \mathrm{D}+1.0$ L (All Spans)
Live Load Defl. (in)	$0.469 @ 7^{\prime} 111 / 8^{\prime \prime}$	0.517	Passed (L/397)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (Alt Spans)
Total Load Defl. (in)	$0.574 @ 7^{\prime} 101 / 16^{\prime \prime}$	0.776	Passed (L/325)	--	$1.0 \mathrm{D}+1.0$ L (Alt Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Overhang deflection criteria: $\operatorname{LL}(2 L / 360)$ and $T L(2 L / 240)$. Upward deflection on right cantilever exceeds overhang deflection criteria.
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length $L=15^{\prime} 1 / 4^{\prime \prime}$.
- Critical negative moment adjusted by a volume factor of 1.00 that was calculated using length $L=6^{\prime} 1111 / 16^{\prime \prime}$.
- Upward deflection on right cantilever exceeds $0.4^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

	Bearing Length				Loads to Supports (Ibs)		
	Total	Available	Required	Dead	Floor Live	Total	Accessories
	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$2.16^{\prime \prime}$	1525	$5390 /-597$	$6915 /-$ 597	Blocking
	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$3.31^{\prime \prime}$	2723	7866	10589	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$20^{\prime} 10^{\prime \prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$20^{\prime} 10^{\prime \prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

			Fead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	$\mathbf{(0 . 9 0)}$	$\mathbf{(1 . 0 0)}$	Comments
0 - Self Weight (PLF)	0 to $20^{\prime} 10^{\prime \prime}$	N / A	16.8	--	
1- Uniform (PSF)	0 to $15^{\prime} 10^{\prime \prime}$ (Front)	17^{\prime}	12.0	40.0	Default Load
2 - Point (Ib)	$20^{\prime} 77^{\prime \prime}$ (Front)	N / A	334	946	
3 - Point (Ib)	$20^{\prime} 77^{\prime \prime}$ (Front)	N / A	334	946	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Ron Coulter	
Coulter Architects PLLC	
(509) 630-5518	
rkent.architecture@gmail.com	

Level, Deck Beam B5

1 piece(s) 3 1/8" $\times 18^{\prime \prime}$ 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$3024 @ 9^{\prime} 31 / 4^{\prime \prime}$	7305 (5.50")	Passed (41\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$1205 @ 7^{\prime} 61 / 2^{\prime \prime}$	9938	Passed (12\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Pos Moment (Ft-lbs)	$2550 @ 17^{\prime} 111 / 4^{\prime \prime}$	33750	Passed (8\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (Alt Spans)
Neg Moment (Ft-lbs)	-3459 @ $9^{\prime} 31 / 4^{\prime \prime}$	26016	Passed (13\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.024 @ 17^{\prime} 23 / 1^{\prime \prime}$	0.368	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (Alt Spans)
Total Load Defl. (in)	$0.031 @ 17^{\prime} 37 / 16^{\prime \prime}$	0.736	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (Alt Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length $L=12^{\prime} 19 / 16^{\prime \prime}$.
- Critical negative moment adjusted by a volume factor of 1.00 that was calculated using length $L=5^{\prime} 115 / 8^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			Accessories
	Total	Available	Required	Dead	Floor Live	Total	
1 - Hanger on $18^{\prime \prime}$ DF beam	5.50"	Hanger ${ }^{1}$	1.50 "	292	979/-92	$\begin{gathered} 1271 /- \\ 92 \end{gathered}$	See note ${ }^{1}$
2-Beam-SPF	$5.50{ }^{\prime \prime}$	5.50"	2.28"	838	2186	3024	None
3 - Hanger on $18^{\prime \prime}$ DF beam	5.50"	Hanger ${ }^{1}$	1.50 "	231	667/-8	898/-8	See note ${ }^{1}$

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- 1 See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$23^{\prime} 7^{\prime \prime} 0 / \mathrm{c}$	
Bottom Edge (Lu)	$23^{\prime} 7^{\prime \prime} 0 / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	LGU3.25-SDS H=18	4.50"	N/A	16-SDS25212	12-SDS25212	
3 - Face Mount Hanger	LGU3.25-SDS H=18	4.50 "	N/A	16-SDS25212	12-SDS25212	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	$\mathbf{(0 . 9 0)}$	$\mathbf{(1 . 0 0)}$	Comments
0 - Self Weight (PLF)	$51 / 2^{\prime \prime}$ to 24^{\prime}	N/A	13.7	--	
1 - Uniform (PSF)	0 to $24^{\prime} 51 / 2^{\prime \prime}($ Top)	$2^{\prime} 6^{\prime \prime}$	10.0	40.0	Default Load
2 - Uniform (PSF)	0 to $9^{\prime} 6^{\prime \prime}($ Back $)$	3^{\prime}	15.0	40.0	

ForteWEB Software Operator	Job Notes
Ron Coulter	
Coulter Architects PLLC	
$(509) 630-5518$	
rkent.architecture@gmail.com	

1 piece(s) 5 1/8" x 13 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	5311 @ 12' $51 / 2^{\prime \prime}$	5311 (1.59")	Passed (100\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	4477 @ 11' 4"	12223	Passed (37\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Pos Moment (Ft-lbs)	16680 @ 7' ${ }^{\prime \prime}$	31134	Passed (54\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	0.051 @ 6' 8"	0.300	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Total Load Defl. (in)	0.225 @ 6' $67 / 16^{\prime \prime}$	0.600	Passed (L/640)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length $L=12^{\prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Floor Live	Total	
1 - Hanger on $131 / 2^{\prime \prime}$ DF beam	5.50"	Hanger ${ }^{1}$	$1.50{ }^{\prime \prime}$	4332	975	5307	See note ${ }^{1}$
2 - Hanger on $131 / 2^{\prime \prime}$ DF beam	5.50"	Hanger ${ }^{1}$	1.59"	4456	1187	5643	See note ${ }^{1}$

At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$12^{\prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$12^{\prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1- Face Mount Hanger	HUCQ5.25/11-SDS	$3.00^{\prime \prime}$	N/A	14-SDS25212	6 -SDS25212	
2 - Face Mount Hanger	HGUS5.25/10	$4.00^{\prime \prime}$	N/A	$46-10 d$	$16-10 d$	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0})$	Comments
0 - Self Weight (PLF)	$51 / 2^{\prime \prime}$ to $12^{\prime} 51 / 2^{\prime \prime}$	N/A	16.8	--	
1 - Uniform (PSF)	0 to $12^{\prime} 11^{\prime \prime}$ (Front)	$2^{\prime} 6^{\prime \prime}$	250.0	40.0	Default Load
2 - Point (Ib)	$7^{\prime} 11^{\prime \prime}$ (Front)	N/A	513	871	
3 - Point (lb)	0 (Front)	N/A	-	-	

1 piece(s) 3 1/8" x 13 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1322 @ $51 / 2^{\prime \prime}$	$3047(1.50$ ")	Passed (43\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	1142 @ $1^{\prime} 7^{\prime \prime}$	7453	Passed (15\%)	1.00	$1.0 \mathrm{D}+1.0$ L (All Spans)
Pos Moment (Ft-Ibs)	5454 @ $8^{\prime} 81 / 2^{\prime \prime}$	18984	Passed (29\%)	1.00	$1.0 \mathrm{D}+1.0$ L (All Spans)
Live Load Defl. (in)	0.145 @ $8^{\prime} 81 / 2^{\prime \prime}$	0.412	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0$ L (All Spans)
Total Load Defl. (in)	0.232 @ $8^{\prime} 81 / 2^{\prime \prime}$	0.825	Passed (L/854)	--	$1.0 \mathrm{D}+1.0$ L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length $L=16^{\prime} 6^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			Accessories
Supports	Total	Available	Required	Dead	Floor Live	Total	
1 - Hanger on $131 / 2^{\prime \prime}$ DF beam	$5.50{ }^{\prime \prime}$	Hanger ${ }^{1}$	1.50 "	520	871	1391	See note ${ }^{1}$
2 - Hanger on $131 / 2^{\prime \prime}$ DF beam	$5.50{ }^{\prime \prime}$	Hanger ${ }^{1}$	1.50 "	520	871	1391	See note ${ }^{1}$

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$16^{\prime} 6^{\prime \prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$16^{\prime} 6^{\prime \prime} \circ / \mathrm{c}$	

- Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie							
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories	
1- Face Mount Hanger	LUS210-2	$2.00^{"}$	N/A	$8-10 \mathrm{dx} \times 1.5$	$6-10 \mathrm{~d}$		
2 - Face Mount Hanger	LUS210-2	$2.00^{"}$	$\mathrm{~N} / \mathrm{A}$	$8-10 \mathrm{dx} \times 1.5$			

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0})$	Comments
0 - Self Weight (PLF)	$51 / 2^{\prime \prime}$ to $16^{\prime} 111 / 2^{\prime \prime}$	N / A	10.3	--	
1 - Uniform (PSF)	0 to $17^{\prime} 5^{\prime \prime}$ (Front)	$2^{\prime} 6^{\prime \prime}$	20.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Ron Coulter	
Coulter Architects PLLC	
(509) 630-5518	
rkent.architecture@gmail.com	

File Name: Dave's House

1 piece(s) 3 1/8" x 13 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (Ibs)	4779 @ $51 / 2^{\prime \prime}$	$4779\left(2.355^{\prime \prime}\right)$	Passed (100\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$3952 @ 1^{\prime} 7^{\prime \prime}$	7453	Passed (53\%)	1.00	$1.0 \mathrm{D}+1.0$ L (All Spans)
Pos Moment (Ft-lbs)	15532 @ $6^{\prime} 111 / 2^{\prime \prime}$	18984	Passed (82\%)	1.00	$1.0 \mathrm{D}+1.0$ L (All Spans)
Live Load Defl. (in)	0.056 @ $6^{\prime} 111 / 2^{\prime \prime}$	0.325	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0$ L (All Spans)
Total Load Defl. (in)	$0.410 @ 6^{\prime} 111 / 2^{\prime \prime}$	0.650	Passed (L/381)	--	$1.0 \mathrm{D}+1.0$ L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length $L=13^{\prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Floor Live	Total	Accessories
1- Hanger on $131 / 2^{\prime \prime}$ DF beam	$5.50^{\prime \prime}$	Hanger 1	$2.35^{\prime \prime}$	4416	696	5112	See note ${ }^{1}$
2 - Hanger on $131 / 2^{\prime \prime}$ DF beam	$5.50^{\prime \prime}$	Hanger 1	$2.35^{\prime \prime}$	4416	696	5112	See note 1

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$13^{\prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$13^{\prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie							
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories	
1- Face Mount Hanger	HHUS210-2	$3.00^{\prime \prime}$	N / A	$30-16 \mathrm{~d}$	$10-16 \mathrm{~d}$		
2 - Face Mount Hanger	HHUS210-2	$3.00^{\prime \prime}$	N / A	$30-16 \mathrm{~d}$	$10-16 \mathrm{~d}$		

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0})$	Comments
0 - Self Weight (PLF)	$51 / 2^{\prime \prime}$ to $13^{\prime} 51 / 2^{\prime \prime}$	N / A	10.3	--	
1 - Uniform (PSF)	0 to $13^{\prime} 11^{\prime \prime}$ (Front)	$2^{\prime} 6^{\prime \prime}$	250.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Ron Coutter Coulter Architects PLLC (509) $63-5518$ rkent.architecture@gmail.com	

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	6750 @ 2"	7656 (3.50")	Passed (88\%)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{Lr}$ (All Spans)
Shear (lbs)	6511 @ 1' 3/4"	7689	Passed (85\%)	1.25	$1.0 \mathrm{D}+1.0 \mathrm{Lr}$ (All Spans)
Moment (Ft-lbs)	10329 @ 1' 9"	14005	Passed (74\%)	1.25	$1.0 \mathrm{D}+1.0 \mathrm{Lr}$ (All Spans)
Live Load Defl. (in)	0.180 @ 4' 1/16"	0.275	Passed (L/549)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{Lr}$ (All Spans)
Total Load Defl. (in)	0.272 @ 3' $1115 / 16^{\prime \prime}$	0.412	Passed (L/364)	--	1.0 D + 0.75 L + 0.75 Lr (All Spans)

System : Floor
Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: $\mathrm{LL}(L / 360)$ and $T L(L / 240)$.
- Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (Ibs)				Accessories
Supports	Total	Available	Required	Dead	Floor Live	Roof Live	Total	
1 - Stud wall - DF	3.50 "	$3.50{ }^{\prime \prime}$	3.09"	2321	1588	4318	8227	Blocking
2 - Stud wall - DF	3.50 "	3.50 "	1.50 "	945	1588	1025	3558	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$8^{\prime} 7^{\prime \prime}$ o/c	
Bottom Edge (Lu)	$8^{\prime} 7^{\prime \prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	$\begin{gathered} \text { Dead } \\ (0.90) \end{gathered}$	Floor Live (1.00)	Roof Live (non-snow: 1.25)	Comments
0 - Self Weight (PLF)	0 to $8^{\prime} 7^{\prime \prime}$	N/A	9.4	--	--	
1 - Uniform (PSF)	0 to $8^{\prime} 7^{\prime \prime}$ (Front)	$9^{1} 3^{\prime \prime}$	12.0	40.0	-	Default Load
2 - Point (lb)	1' 9"' (Front)	N/A	2233	-	5343	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Ron Coulter	
Coulter Architects PLLC	
(509) 630-5518	
rent.architecture@gmail.com	

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$977 @ 0$	$3938(1.50 ")$	Passed (25\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (Ibs)	$834 @ 103 / 4^{\prime \prime}$	6151	Passed (14\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$2991 @ 6^{\prime} 11 / 2^{\prime \prime}$	11204	Passed (27\%)	1.00	$1.0 \mathrm{D}+1.0$ L (All Spans)
Live Load Defl. (in)	$0.116 @ 6^{\prime} 11 / 2^{\prime \prime}$	0.408	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Total Load Defl. (in)	$0.186 @ 6^{\prime} 11 / 2^{\prime \prime}$	0.613	Passed (L/792)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)

System : Wall
Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length				Loads to Supports (lbs)		
	Total	Available	Required	Dead	Floor Live	Total	Accessories
1- Trimmer - DF	$1.50^{\prime \prime}$	$1.50^{\prime \prime}$	$1.50^{\prime \prime}$	364	613	977	None
2-Trimmer - DF	$1.50^{\prime \prime}$	$1.50^{\prime \prime}$	$1.50^{\prime \prime}$	364	613	977	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$12^{\prime} 3^{\prime \prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$12^{\prime} 3^{\prime \prime} \mathrm{o} / \mathrm{c}$	

- Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	$\mathbf{(0 . 9 0)}$	$\mathbf{(1 . 0 0)}$	Comments
0 - Self Weight (PLF)	0 to $12^{\prime} 3^{\prime \prime}$	N/A	9.4	--	
1 - Uniform (PSF)	0 to $12^{\prime} 3^{\prime \prime}$	$2^{\prime} 6^{\prime \prime}$	20.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Ron Coulter	
Coulter Architects PLLC	
(509) 630-5518	
rent.architecture@gmail.com	

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	7561 @ 2"	11211 (3.50")	Passed (67\%)	--	1.0 D + 1.0 S (All Spans)
Shear (lbs)	6141 @ 1'91/2"	18742	Passed (33\%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-lbs)	34823 @ 9' $61 / 2^{\prime \prime}$	61820	Passed (56\%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.347 @ 9' $61 / 2^{\prime \prime}$	0.625	Passed (L/648)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	0.492 @ 9' $61 / 2^{\prime \prime}$	0.938	Passed (L/458)	--	1.0 D +1.0 S (All Spans)

System : Floor
Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume factor of 0.97 that was calculated using length $L=18^{\prime} 99^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- Applicable calculations are based on NDS.

Supports	Bearing Length				Loads to Supports (lbs)		
	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Stud wall - DF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$2.36^{\prime \prime}$	2218	5343	7561	Blocking
2 - Stud wall - DF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$2.36^{\prime \prime}$	2218	5343	7561	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$19^{\prime} 1^{\prime \prime}$ o/c	
Bottom Edge (Lu)	$19^{\prime} 1^{\prime \prime}$ o/c	

-Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	$\mathbf{(0 . 9 0)}$	(1.15)	Comments
0 - Self Weight (PLF)	0 to $19^{\prime} 1^{\prime \prime}$	N/A	22.4	--	
1 - Uniform (PSF)	0 to $19^{\prime} 1^{\prime \prime}$ (Front)	14^{\prime}	15.0	40.0	Default Load

Weyerhaeuser Notes

 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Ron Coulter	
Coulter Architects PLLC	
(509) 630-5518	
rkent.architecture@gmail.com	

2 piece(s) 1 3/4" x 9 1/2" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1318 @ $51 / 2^{\prime \prime}$	$3938(1.50 ")$	Passed (33\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$1191 @ 1^{\prime} 3^{\prime \prime}$	6318	Passed (19\%)	1.00	$1.0 \mathrm{D}+1.0$ L (All Spans)
Moment (Ft-lbs)	5435 @ $8^{\prime} 81 / 2^{\prime \prime}$	11775	Passed (46\%)	1.00	$1.0 \mathrm{D}+1.0$ L (All Spans)
Live Load Defl. (in)	$0.345 @ 8^{\prime} 81 / 2^{\prime \prime}$	0.412	Passed (L/574)	--	$1.0 \mathrm{D}+1.0$ L (All Spans)
Total Load Defl. (in)	0.551 @ $8^{\prime} 81 / 2^{\prime \prime}$	0.825	Passed (L/359)	--	$1.0 \mathrm{D}+1.0$ L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (Ibs)			Accessories
Supports	Total	Available	Required	Dead	Floor Live	Total	
1-Hanger on $91 / 2^{\prime \prime}$ DF beam	5.50 "	Hanger ${ }^{1}$	1.50 "	515	871	1386	See note ${ }^{1}$
2 - Hanger on $91 / 2^{\prime \prime}$ DF beam	5.50 "	Hanger ${ }^{1}$	$1.50{ }^{\prime \prime}$	515	871	1386	See note ${ }^{1}$

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$16^{\prime} 6^{\prime \prime} \mathrm{o} / \mathrm{C}$	
Bottom Edge (Lu)	$16^{\prime} 6^{\prime \prime} \circ / \mathrm{c}$	

- Maximum allowable bracing intervals based on applied load.

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0})$	Comments
0 - Self Weight (PLF)	$51 / 2^{\prime \prime}$ to $16^{\prime} 111 / 2^{\prime \prime}$	N / A	9.7	--	
1 - Uniform (PSF)	0 to $17^{\prime} 5^{\prime \prime}$ (Front)	$2^{\prime} 6^{\prime \prime}$	20.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Ron Coulter	
Coulter Architects PLLC	
(509) 630-5518	
rkent.architecture@gmail.com	

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$5080 @ 11 / 2^{\prime \prime}$	$7875\left(3.00^{\prime \prime}\right)$	Passed (65\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (Ibs)	$4152 @ 1^{\prime} 21 / 4^{\prime \prime}$	8603	Passed (48\%)	1.15	$1.0 \mathrm{D}+1.0$ S (All Spans)
Moment (Ft-lbs)	$15880 @ 6^{\prime} 6^{\prime \prime}$	18558	Passed (86\%)	1.15	$1.0 \mathrm{D}+1.0$ S (All Spans)
Live Load Defl. (in)	$0.434 @ 6^{\prime} 6^{\prime \prime}$	0.425	Passed (L/352)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Total Load Defl. (in)	$0.606 @ 6^{\prime} 6^{\prime \prime}$	0.637	Passed (L/253)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)

System : Wall
Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (lbs)				Accessories
	Total	Available	Required	Dead	Roof Live	Snow	Total	
1 - Trimmer - DF	3.00 "	3.00 "	1.94"	1440	3640	3640	8720	None
2 - Trimmer - DF	3.00 "	3.00 "	1.94"	1440	3640	3640	8720	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$6^{\prime} 4^{\prime \prime} \circ / \mathrm{c}$	
Bottom Edge (Lu)	$13^{\prime} \circ / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

			Read	Roof Live	Snow	(1.15)
Vertical Loads	Location	Tributary Width	$\mathbf{(0 . 9 0)}$	(non-snow: 1.25)	Coments	
0 - Self Weight (PLF)	0 to 13^{\prime}	N / A	11.5	--	--	
1 - Uniform (PSF)	0 to 13^{\prime}	14^{\prime}	15.0	40.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Ron Coulter	
Coulter Architects PLLC	
(509) $630-5518$	
rkent.architecture@gmail.com	

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3614 @ 0	3938 (1.50")	Passed (92\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	2784 @ 1'3/4"	8603	Passed (32\%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	8358 @ 4' $71 / 2^{\prime \prime}$	18558	Passed (45\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	0.129 @ 4' $71 / 2^{\prime \prime}$	0.308	Passed (L/863)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	0.179 @ 4' 7 1/2"	0.463	Passed (L/619)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)

System : Wall
Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length				Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Roof Live	Snow	Total	Accessories
1- Trimmer - DF	$1.50^{\prime \prime}$	$1.50^{\prime \prime}$	$1.50^{\prime \prime}$	1024	2590	2590	6204	None
2 - Trimmer - DF	$1.50^{\prime \prime}$	$1.50^{\prime \prime}$	$1.50^{\prime \prime}$	1024	2590	2590	6204	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$9^{\prime} 33^{\prime \prime} 0 / \mathrm{c}$	
Bottom Edge (Lu)	$9^{\prime} 3 \prime \prime / \mathrm{c}$	

- Maximum allowable bracing intervals based on applied load.

			Dead	Roof Live	Snow	
Vertical Loads	Location	Tributary Width	$(\mathbf{0 . 9 0)}$	(non-snow: 1.25)	(1.15)	Comments
0 - Self Weight (PLF)	0 to $9^{\prime} 3^{\prime \prime}$	N / A	11.5	--	-	
1 - Uniform (PSF)	0 to $9^{\prime} 3^{\prime \prime}$	14^{\prime}	15.0	40.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Ron Coulter	
Coulter Architects PLLC	
(509) 630-5518	
rent.architecture@gmail.com	

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$2297 @ 0$	$2813\left(1.50^{\prime \prime}\right)$	Passed (82\%)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Shear (lbs)	$1639 @ 103 / 4^{\prime \prime}$	3830	Passed (43\%)	1.15	$1.0 \mathrm{D}+1.0$ S (All Spans)
Momber : Wall					
Member Type : Header					
Building Use : Residential					
Building Code : IBC 2015					
Design Methodology : ASD					
Live Load Defl. (in)	$3589 @ 3^{\prime} 11 / 2^{\prime \prime}$	4510	Passed (80\%)	1.15	$1.0 \mathrm{D}+1.0$ S (All Spans)
Total Load Defl. (in)	$0.057 @ 3^{\prime} 11 / 2^{\prime \prime}$	0.208	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (Ibs)				Accessories
Supports	Total	Available	Required	Dead	Roof Live	Snow	Total	
1 - Trimmer - DF	$1.50{ }^{\prime \prime}$	1.50 "	1.50 "	547	1750	1750	4047	None
2 - Trimmer - DF	1.50"	$1.50{ }^{\prime \prime}$	1.50 "	547	1750	1750	4047	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$6^{\prime} 3^{\prime \prime}$ o/c	
Bottom Edge (Lu)	$6^{\prime} 3^{\prime \prime} o / c$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location	Tributary Width	Dead $(\mathbf{0 . 9 0})$	Roof Live (non-snow: $\mathbf{1 . 2 5)}$	Snow $(\mathbf{1 . 1 5)}$	Comments
0 - Self Weight (PLF)	0 to $6^{\prime} 3^{\prime \prime}$	N / A	7.0	-	-	
1 - Uniform (PSF)	0 to $6^{\prime} 3^{\prime \prime}$	14^{\prime}	12.0	40.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Ron Coulter	
Coulter Architects PLLC	
(509) $630-5518$	
rkent.architecture@gmail.com	

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1559 @ 0	2813 (1.50")	Passed (55\%)	--	1.0 D + 1.0 S (All Spans)
Shear (lbs)	1024 @ $83 / 4^{\prime \prime}$	3002	Passed (34\%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	1656 @ $2^{\prime} 11 / 2^{\prime \prime}$	3022	Passed (55\%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.025 @ $2^{\prime} 11 / 2^{\prime \prime}$	0.142	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	0.033 @ 2' 11/2"	0.213	Passed (L/999+)	--	1.0 D + 1.0 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

Supports	Bearing Length				Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Roof Live	Snow	Total	Accessories
1-Trimmer - DF	$1.50^{\prime \prime}$	$1.50^{\prime \prime}$	$1.50^{\prime \prime}$	369	1190	1190	2749	None
2 - Trimmer - DF	$1.50^{\prime \prime}$	$1.50^{\prime \prime}$	$1.50^{\prime \prime}$	369	1190	1190	2749	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$4^{\prime} 3^{\prime \prime} \circ / \mathrm{c}$	
Bottom Edge (Lu)	$4^{\prime} 3^{\prime \prime} \circ / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Roof Live (non-snow: $\mathbf{1 . 2 5)}$	Snow $\mathbf{(1 . 1 5)}$	Comments
0 - Self Weight (PLF)	0 to $4^{\prime} 3^{\prime \prime}$	N / A	5.5	-	-	
1 - Uniform (PSF)	0 to $4^{\prime} 3^{\prime \prime}$	14^{\prime}	12.0	40.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Ron Coulter	
Coulter Architects PLLC	
(509) 630-5518	
rkent.architecture@gmail.com	

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1317 @ 0	$2813\left(1.50{ }^{\prime \prime}\right)$	Passed (47\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	$1010 @ 83 / 4^{\prime \prime}$	3002	Passed (34\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Moment (Ft-lbs)	$2058 @ 3^{\prime} 11 / 2^{\prime \prime}$	3022	Passed (68\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	0.068 @ $3^{\prime} 11 / 2^{\prime \prime}$	0.208	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Total Load Defl. (in)	$0.089 @ 3^{\prime} 11 / 2^{\prime \prime}$	0.313	Passed (L/839)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)

System : Wall
Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)				Accessories
Supports	Total	Available	Required	Dead	Roof Live	Snow	Total	
1 - Trimmer - DF	$1.50{ }^{\prime \prime}$	1.50 "	$1.50{ }^{\prime \prime}$	317	1000	1000	2317	None
2 - Trimmer - DF	1.50 "	1.50 "	$1.50{ }^{\prime \prime}$	317	1000	1000	2317	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$6^{\prime} 3^{\prime \prime}$ o/c	
Bottom Edge (Lu)	$6^{\prime} 3^{\prime \prime}$ o/c	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Roof Live (non-snow: $\mathbf{1 . 2 5)}$	Snow $\mathbf{(1 . 1 5)}$	Comments
0 - Self Weight (PLF)	0 to $6^{\prime} 3^{\prime \prime}$	N / A	5.5	-	--	
1 - Uniform (PSF)	0 to $6^{\prime} 3^{\prime \prime}$	8^{\prime}	12.0	40.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Ron Coulter	
Coulter Architects PLLC	
(509) $630-5518$	
rkent.architecture@gmail.com	

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015
Member Reaction (lbs)	3314 @ 11/2"	7875 (3.00")	Passed (42\%)	--	1.0 D +1.0 S (All Spans)	
Shear (lbs)	2502 @ 1' 1/2"	7265	Passed (34\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)	
Moment (Ft-lbs)	6634 @ 4' 3'	13541	Passed (49\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)	Design Methodology : ASD
Live Load Defl. (in)	0.133 @ 4' ${ }^{\prime \prime}$	0.275	Passed (L/743)	--	1.0 D + 1.0 S (All Spans)	
Total Load Defl. (in)	0.185 @ 4' ${ }^{\prime \prime}$	0.412	Passed (L/534)	--	1.0 D + 1.0 S (All Spans)	

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (Ibs)				Accessories
	Total	Available	Required	Dead	Roof Live	Snow	Total	
1 - Trimmer - DF	3.00 "	3.00 "	1.50 "	934	2380	2380	5694	None
2 - Trimmer - DF	3.00 "	3.00 "	1.50"	934	2380	2380	5694	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$8^{\prime} 6^{\prime \prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$8^{\prime} 6^{\prime \prime} \mathrm{o} / \mathrm{C}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Roof Live (non-snow: $\mathbf{1 . 2 5)}$	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to $8^{\prime} 6^{\prime \prime}$	N / A	9.7	--	--	
1 - Uniform (PSF)	0 to $8^{\prime} 6^{\prime \prime}$	14^{\prime}	15.0	40.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Ron Coulter	
Coulter Architects PLLC	
(509) $630-5518$	
rkent.architecture@gmail.com	

Existing House, Deck Beam B12
1 piece(s) 3 1/8" x 18" 24F-V8 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD	
Member Reaction (lbs)	1757 @ 4"	8301 (4.25")	Passed (21\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)		
Shear (lbs)	1442 @ 1'11 1/2"	9938	Passed (15\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)		
Pos Moment (Ft-lbs)	8697 @ 10' $51 / 2^{\prime \prime}$	33750	Passed (26\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)		
Live Load Defl. (in)	0.166 @ 10' $51 / 2^{\prime \prime}$	0.506	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)		
Total Load Defl. (in)	0.235 @ 10' $51 / 2^{\prime \prime}$	1.013	Passed (L/999+)	--	1.0 D + 1.0 L (All Spans)		

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length $L=20^{\prime} 3^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- Applicable calculations are based on NDS

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Floor Live	Total	Accessories
1-Stud wall - DF	$5.50^{\prime \prime}$	$4.25^{\prime \prime}$	$1.50^{\prime \prime}$	518	1255	1773	$11 / 4^{\prime \prime}$ Rim Board
2 - Stud wall - DF	$5.50^{\prime \prime}$	$4.25^{\prime \prime}$	$1.50^{\prime \prime}$	518	1255	1773	$11 / 4^{\prime \prime}$ Rim Board

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$20^{\prime} 9^{\prime \prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$20^{\prime} 9^{\prime \prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $(\mathbf{0 . 9 0})$	Floor Live $(\mathbf{1 . 0 0})$	Comments
0 - Self Weight (PLF)	$11 / 4^{\prime \prime}$ to $20^{\prime} 93 / 4^{\prime \prime}$	N / A	13.7	--	
1 - Uniform (PSF)	0 to $20^{\prime} 11^{\prime \prime}$ (Front)	3^{\prime}	12.0	40.0	Default Load

Weyerhaeuser Notes

 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Ron Coulter	
Coulter Architects PLLC	
(509) $630-5518$	
rkent.architecture@gmail.com	

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$2875 @ 10^{\prime} 51 / 4^{\prime \prime}$	$7623\left(3.50^{\prime \prime}\right)$	Passed (38\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{Lr}$ (All Spans)
Shear (lbs)	1893 @ $9^{\prime} 5^{\prime \prime}$	11884	Passed (16\%)	1.25	$1.0 \mathrm{D}+1.0 \mathrm{Lr}$ (All Spans)
Pos Moment (Ft-lbs)	5871 @ $5^{\prime} 31 / 16^{\prime \prime}$	23543	Passed (25\%)	1.25	$1.0 \mathrm{D}+1.0 \mathrm{Lr}$ (Alt Spans)
Neg Moment (Ft-lbs)	$-297 @ 10^{\prime} 51 / 4^{\prime \prime}$	23543	Passed (1\%)	1.25	$1.0 \mathrm{D}+1.0 \mathrm{Lr}$ (All Spans)
Live Load Defl. (in)	$0.076 @ 5^{\prime} 31 / 2^{\prime \prime}$	0.514	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{Lr}$ (Alt Spans)
Total Load Defl. (in)	$0.125 @ 5^{\prime} 37 / 16^{\prime \prime}$	0.685	Passed (L/987)	--	$1.0 \mathrm{D}+1.0 \mathrm{Lr}$ (Alt Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/240) and TL (L/180).
- Overhang deflection criteria: LL (2L/240) and TL (2L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length $L=10^{\prime} 23 / 16^{\prime \prime}$.
- Critical negative moment adjusted by a volume factor of 1.00 that was calculated using length $L=1^{\prime} 35 / 16^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- Applicable calculations are based on NDS.

| Supports | Bearing Length | | | | Loads to Supports (Ibs) | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Total | Available | Required | Dead | Roof Live | Total | Accessories |
| | $3.50^{\prime \prime}$ | $3.50^{\prime \prime}$ | $1.50^{\prime \prime}$ | 933 | 1449 | 2382 | Blocking |
| 2 - Stud wall - SPF | $3.50^{\prime \prime}$ | $3.50^{\prime \prime}$ | $1.50^{\prime \prime}$ | 1130 | 1745 | 2875 | Blocking |

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$11^{\prime} 77^{\prime \prime} \circ / \mathrm{c}$	
Bottom Edge (Lu)	$11^{\prime} 7^{\prime \prime} \circ / \mathrm{C}$	

- Maximum allowable bracing intervals based on applied load.

			Read	Roof Live	
Vertical Loads	Location (Side)	Tributary Width	$\mathbf{(0 . 9 0)}$	(non-snow: 1.25)	Comments
0 - Self Weight (PLF)	0 to $11^{\prime} 7^{\prime \prime}$	N/A	13.1	--	
1 - Uniform (PSF)	0 to $11^{\prime} 7^{\prime \prime}$ (Front)	11^{\prime}	15.0	25.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Ron Coulter	
Coulter Architects PLLC	
(509) $630-5518$	
rkent.architecture@gmail.com	

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2867 @ 4"	$13613\left(4.25^{\prime \prime}\right)$	Passed (21\%)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{Lr}$ (All Spans)
Shear (lbs)	2248 @ $1^{\prime} 10^{\prime \prime}$	14939	Passed (15\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Pos Moment (Ft-lbs)	22457 @ $11^{\prime} 51 / 2^{\prime \prime}$	55990	Passed (40\%)	1.25	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{Lr}$ (All Spans)
Live Load Defl. (in)	$0.294 @ 11^{\prime} 51 / 2^{\prime \prime}$	0.556	Passed (L/908)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{Lr}$ (All Spans)
Total Load Defl. (in)	$0.510 @ 11^{\prime} 51 / 2^{\prime \prime}$	1.112	Passed (L/523)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{Lr}$ (All Spans)

System : Floor
Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume factor of 0.96 that was calculated using length $L=22^{\prime} 3^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)				Accessories
	Total	Available	Required	Dead	Floor Live	Roof Live	Total	
1-Stud wall - DF	$5.50{ }^{\prime \prime}$	4.25"	1.50 "	1195	1375	873	3443	11/4" Rim Board
2 - Stud wall - DF	5.50"	4.25"	1.50 "	1195	1375	873	3443	11/4" Rim Board

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$22^{\prime \prime} 9^{\prime \prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$22^{\prime \prime} 9^{\prime \prime} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live $\mathbf{(1 . 0 0)}$	Roof Live (non-snow: 1.25)	Comments
0 - Self Weight (PLF)	$11 / 4^{\prime \prime}$ to $22^{\prime} 93 / 4^{\prime \prime}$	N / A	20.5	-	--	
1 - Uniform (PSF)	0 to $22^{\prime} 11^{\prime \prime}$ (Front)	3^{\prime}	12.0	40.0	-	Default Load
2 - Point (lb)	$11^{\prime} 51 / 2^{\prime \prime}$ (Front)	N / A	1098	-	1745	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Ron Coulter	
Coulter Architects PLLC	
(509) 630-5518	
rent.architecture@gmail.com	

Existing House, Deck Beam B15
2 piece(s) 1 3/4" x 18" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	934 @ $4^{\prime \prime}$	$9297\left(4.25^{\prime \prime}\right)$	Passed (10\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$610 @ 1^{\prime} 111 / 2^{\prime \prime}$	11970	Passed (5\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	2290 @ $5^{\prime} 51 / 2^{\prime \prime}$	38753	Passed (6\%)	1.00	$1.0 \mathrm{D}+1.0$ L (All Spans)
Live Load Defl. (in)	0.012 @ $5^{\prime} 51 / 2^{\prime \prime}$	0.256	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0$ L (All Spans)
Total Load Defl. (in)	$0.017 @ 5^{\prime} 51 / 2^{\prime \prime}$	0.512	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0$ L (All Spans)

System : Floor
Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length				Loads to Supports (Ibs)		

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$10^{\prime} 9^{\prime \prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$10^{\prime} 99^{\prime \prime} \mathrm{o} \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $(\mathbf{0 . 9 0})$	Floor Live $\mathbf{(1 . 0 0)}$	Comments
0 - Self Weight (PLF)	$11 / 4^{\prime \prime}$ to $10^{\prime} 93 / 4^{\prime \prime}$	N / A	18.4	--	
1 - Uniform (PSF)	0 to $10^{\prime} 11^{\prime \prime}$ (Front)	3^{\prime}	12.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Ron Coulter	
Coulter Architects PLLC	
(509) $630-5518$	
rkent.architecture@gmail.com	

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2338 @ 4"	$13613\left(4.25^{\prime \prime}\right)$	Passed (17\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (Ibs)	2007 @ $1^{\prime} 111 / 2^{\prime \prime}$	16298	Passed (12\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Pos Moment (Ft-lbs)	14788 @ $13^{\prime} 21 / 2^{\prime \prime}$	52078	Passed (28\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	0.265 @ $13^{\prime} 21 / 2^{\prime \prime}$	0.644	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Total Load Defl. (in)	$0.394 @ 13^{\prime} 21 / 2^{\prime \prime}$	1.288	Passed (L/785)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume factor of 0.94 that was calculated using length $L=25^{\prime} 9^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Floor Live	Total	
1 - Stud wall - DF	5.50"	4.25"	1.50 "	769	1585	2354	$11 / 4^{\prime \prime}$ Rim Board
2 - Stud wall - DF	5.50"	4.25"	1.50"	769	1585	2354	$11 / 4$ " Rim Board

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$26^{\prime} 3^{\prime \prime}$ o/c	
Bottom Edge (Lu)	$26^{\prime} 3^{\prime \prime}$ o/c	

-Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	$\mathbf{(0 . 9 0)}$	$\mathbf{(1 . 0 0)}$	Comments
0 - Self Weight (PLF)	$11 / 4^{\prime \prime}$ to $26^{\prime} 33 / 4^{\prime \prime}$	N / A	22.4	--	
1 - Uniform (PSF)	0 to $26^{\prime} 5^{\prime \prime}$ (Front)	3^{\prime}	12.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Ron Coulter	
Coulter Architects PLLC	
(509) 630-5518	
rent.architecture@gmail.com	

Level, Deck Beam B17
1 piece(s) 3 1/8" x 18" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (Ibs)	$1306 @ 51 / 2^{\prime \prime}$	$3047\left(1.50^{\prime \prime}\right)$	Passed (43\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (Alt Spans)
Shear (lbs)	$1192 @ 17^{\prime} 111 / 2^{\prime \prime}$	9938	Passed (12\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Pos Moment (Ft-Ibs)	6148 @ $9^{\prime} 101 / 2^{\prime \prime}$	33750	Passed (18\%)	1.00	$1.0 \mathrm{D}+1.0$ L (Alt Spans)
Neg Moment (Ft-lbs)	$-1896 @ 19^{\prime} 81 / 4^{\prime \prime}$	26016	Passed (7\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.113 @ 10^{\prime} 7 / 8^{\prime \prime}$	0.481	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (Alt Spans)
Total Load Defl. (in)	$0.148 @ 10^{\prime} 1 / 16^{\prime \prime}$	0.961	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0$ L (Alt Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Overhang deflection criteria: LL (2L/480) and TL (2L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length $\mathrm{L}=18^{\prime} 10^{\prime \prime}$.
- Critical negative moment adjusted by a volume factor of 1.00 that was calculated using length $L=6^{\prime} 713 / 16^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (Ibs)			Accessories
Supports	Total	Available	Required	Dead	Floor Live	Total	
1 - Hanger on $18^{\prime \prime}$ DF beam	$5.50{ }^{\prime \prime}$	Hanger ${ }^{1}$	1.50 "	356	1007/-25	$\begin{gathered} 1363 /- \\ 25 \end{gathered}$	See note ${ }^{1}$
2 - Beam - DF	5.50 "	5.50"	1.50 "	602	1555	2157	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$24^{\prime} 6^{\prime \prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$24^{\prime} 6^{\prime \prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	LGU3.25-SDS H=18	$4.50^{\prime \prime}$	N/A	$16-$ SDS25212	$12-$ SDS 25212	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live $\mathbf{(1 . 0 0)}$	Comments
0 - Self Weight (PLF)	$51 / 2^{\prime \prime}$ to $24^{\prime} 11^{\prime \prime}$	N / A	13.7	--	
1 - Uniform (PSF)	0 to $24^{\prime} 11^{\prime \prime}$ (Front)	$2^{\prime} 6^{\prime \prime}$	10.0	40.0	Default Load

ForteWEB Software Operator	Job Notes
Ron Coulter	
Coulter Architects PLLC	
(509) $630-$-5518	
rkent.architecture@gmail.com	

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (Ibs)	1754 @ $51 / 2^{\prime \prime}$	$3047\left(1.50^{\prime \prime}\right)$	Passed (58\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (Alt Spans)
Shear (lbs)	1546 @ $1^{\prime} 111 / 2^{\prime \prime}$	9938	Passed (16\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (Alt Spans)
Pos Moment (Ft-lbs)	4758 @ $4^{\prime} 57 / 16^{\prime \prime}$	33750	Passed (14\%)	1.00	$1.0 \mathrm{D}+1.0$ L (Alt Spans)
Neg Moment (Ft-lbs)	$-1896 @ 13^{\prime} 21 / 4^{\prime \prime}$	26016	Passed (7\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.039 @ 6^{\prime} 57 / 8^{\prime \prime}$	0.318	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (Alt Spans)
Total Load Defl. (in)	$0.048 @ 6^{\prime} 53 / 16^{\prime \prime}$	0.636	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0$ L (Alt Spans)

System : Floor
Member Type : Flush Beam
Building Use : Residential
Building Code : IBC 2015
Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Overhang deflection criteria: LL (2L/480) and TL (2L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length $L=12^{\prime} 33 / 8^{\prime \prime}$,
- Critical negative moment adjusted by a volume factor of 1.00 that was calculated using length $L=6^{\prime} 99 / 16^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			Accessories
	Total	Available	Required	Dead	Floor Live	Total	
1 - Hanger on $18^{\prime \prime}$ DF beam	5.50"	Hanger ${ }^{1}$	1.50 "	399	1413/-62	$\begin{gathered} 1812 /- \\ 62 \end{gathered}$	See note ${ }^{1}$
2 - Beam - DF	$5.50{ }^{\prime \prime}$	5.50"	1.50 "	547	1496	2043	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$18^{\prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$18^{\prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1- Face Mount Hanger	LGU3.25-SDS H=18	$4.50^{\prime \prime}$	N/A	16 -SDS25212	12 -SDS25212	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Floor Live		
Vertical Loads	Location (Side)	Tributary Width	(0.90)	$\mathbf{(1 . 0 0)}$	Comments
0 - Self Weight (PLF)	$51 / 2^{\prime \prime}$ to $18^{\prime} 5^{\prime \prime}$	N / A	13.7	-	
1 - Uniform (PSF)	0 to $18^{\prime} 5^{\prime \prime}$ (Front)	$2^{\prime} 6^{\prime \prime}$	10.0	40.0	Default Load
2 - Point (Ib)	$3^{\prime} 6^{\prime \prime}$ (Front)	N / A	240	960	

ForteWEB Software Operator	Job Notes
Ron Coulter	
Coulter Architects PLLC	
(509) $630-5518$	
rkent.architecture@gmail.com	

COULTER ARCHITECTURE

RE: New Home for Pattie and Dave Coulter 35465 Rueppell Avenue
Pacific City, OR
Tillamook County

Design Criteria used in the design of the this structure is listed below:

GRAVITY

Snow Load:	36 PSF Ground Snow Load
	25 PSF Roof Snow)
Live Load:	40 PSF residential $\& 60$ PSF decks
Dead Loads:	15 PSF or "self-weight"

LATERAL

SEISMIC

Equivalent lateral force procedure per 2018 IBC and ASCE 7-16 Site Class E, Seismic Design Category is "D"

UPPER (MAIN) LEVEL:

Systems:
Cantilevered Concrete Columns @ Carport $\rightarrow \mathrm{R}=2,5$
$\mathrm{Cs}=0.184$
Wood framed shearwalls Balance $\rightarrow \mathrm{R}=6.0$ (used 5.0 to be conservative)
$\mathrm{Cs}=0.1364$
$\mathbf{V e q}=14,720 \mathrm{lb}$ Total \leftarrow
WIND
WIND SPEED $=115 \mathrm{mph}, 3$ second gust (ultimate)
WIND EXPOSURE, "C"
WIND Kzt $=1.02$
$\mathrm{V}=5,862 \mathrm{lb} \mathrm{N} / \mathrm{S}$
$\mathrm{V}=11,244 \mathrm{lb} \mathrm{E} / \mathrm{W}$

SEISMIC FORCES CONTROL LATERAL DESIGN!

105 N. Emerson Street, Suite 201, Chelan, Washington Mail: P.O. Box 2323, Lake Chelan, WA 98816
Office: 509.630.5518

STRUCTURAL PHIL
PHIL VAN HEYNINGEN, PE
7675 NAHAHUM CANYON ROAD
CASHMERE, WA 98815
structuralphil@gmail.com

Project Title: New Home for Pattie and Dave Coulter
Engineer: S/P
Project ID: 28PV21
Project Descr:Two - Story @ 35465 Rueppell Ave

MAIN WIND FORCE RESISTING SYSTEM

Basic Values

User has specified the building frequency is $>=1 \mathrm{~Hz}$, therefore considered RIGID for both North-South and East-West directions.

Building Story Data

Level Description	hi ft	Story Ht ft	$\mathrm{E}_{\mathrm{R}}: \mathrm{X}$ ft	$\mathrm{E}_{\mathrm{R}}: \mathrm{X}$ ft
ROOF	22.00	11.00	0.000	0.000
FLOOR	11.00	11.00	0.000	0.000

Gust Factor		For wind coming from direction indicated			
North	$=$	0.850	South	$=$	0.850
East	$=$	0.850	West	$=$	0.850

Enclosure

Check if Building Qualifies as "Open"

	North Wall	South Wall	East Wall	West Wall	Roof	Total
Agross	$\mathrm{ft}^{\wedge} 2$	$0.0 \mathrm{ft}^{\wedge} 2$				
Aopenings	$\mathrm{ft}^{\wedge} 2$	$0.0 \mathrm{ft}^{\wedge} 2$				
Aopenings $>=0.8$ * Agross ?	Yes	Yes	Yes	Yes		

All four Agross values must be non-zero
Building qualifies as "Open"
North Elevation : Determine Enclosure Classification per ASCE Section 26.12

Reference area $=$ smaller of 4 sq. ft. or 1% of Agross	$=$	$0.0 \mathrm{ft}^{\wedge} 2$	Is Ao $>1.10{ }^{*}$ Aoi ?	$=$
Aoi $=$ Ao-total -Ao	$=$	$0.0 \mathrm{f}^{\wedge} 2$	Is Ao $>$ Reference Area?	$=$
Agi $=$ Ag-total -Ag	$=$	$0.0 \mathrm{ft}^{\wedge} 2$	Is Aoi $/$ Agi $>=0.20 ?$	No
Aoi $/$ Agi	0.0		No	Yes

Building is "Enclosed" when the North wall receives positive external pressure

South Elevation : Determine Enclosure Classification per ASCE Section 26.12

Reference area $=$ smaller of 4 sq. ft. or 1% of Agross	$=$	$0.0 \mathrm{ft}^{\wedge} 2$	Is Ao >1.10 * Aoi ?	$=$
Aoi $=$ Ao-total - Ao	$=$	$0.0 \mathrm{f}^{\wedge} 2$	Is Ao $>$ Reference Area?	$=$
Agi $=$ Ag-total -Ag	$=$	$0.0 \mathrm{f}^{\wedge} 2$	Is Aoi $/$ Agi $>=0.20 ?$	No
Aoi $/$ Agi	0.0		No	Yes

Building is "Enclosed" when the South wall receives positive external pressure

East Elevation : Determine Enclosure Classification per ASCE Section 26.12

Reference area $=$ smaller of 4 sq. ft. or 1% of Agross	$=$	$0.0 \mathrm{ft}^{\wedge} 2$	Is Ao $>1.10 *$ Aoi ?	$=$
Aoi $=$ Ao-total -Ao	$=$	$0.0 \mathrm{f}^{\wedge} 2$	Is Ao $>$ Reference Area?	$=$
Agi $=$ Ag-total -Ag	$=$	$0.0 \mathrm{f}^{\wedge} 2$	Is Aoi $/$ Agi $>=0.20 ?$	No
Aoi $/$ Agi	0.0		No	Yes

Building is "Enclosed" when the East wall receives positive external pressure

STRUCTURAL PHIL
PHIL VAN HEYNINGEN, PE
7675 NAHAHUM CANYON ROAD
CASHMERE, WA 98815
structuralphil@gmail.com

Project Title: New Home for Pattie and Dave Coulter
Engineer: $\quad \mathrm{S} / \mathrm{P}$
Project ID: 28PV21
Project Descr:Two - Story @ 35465 Rueppell Ave

Printed: 14 JUN 2021. 9:44AM
File: DAVE COULTER.ec6
ASCE 7-16 Wind Forces, Chapter 27, Part I
Lic. \# : KW-06009465 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.3

DESCRIPTION: WIND BASE SHEAR
West Elevation : Determine Enclosure Classification per ASCE Section 26.12

Reference area $=$ smaller of 4 sq . ft. or 1% of Agross	=	$0.0 \mathrm{ff}^{\wedge} 2$	Is $A 0>1.10$ * Aoi ?	=	No
Aoi $=$ Ao-total - Ao	=	$0.0 \mathrm{ft}^{\wedge} 2$	Is $A 0>$ Reference Area?	=	No
Agi $=$ Ag-total -Ag	=	$0.0 \mathrm{ft}^{\wedge} 2$	Is Aoi / Agi > $=0.20$?		Yes
Aoi / Agi	=	0.0			

Building is "Enclosed" when the West wall receives positive external pressure

Velocity Pressures

When the following walls experience leeward or sidewall pressures, the value of Kh shall be (per Table 26.10-1) : North Wall $=0.9245 \mathrm{psf} \quad$ South Wall $=0.9245 \mathrm{psf} \quad$ East Wall $=0.9245 \mathrm{psf} \quad$ West Wall $=\quad 0.9245$ psf
When the following walls experience leeward or sidewall pressures, the value of qh shall be (per Table 26.10-1) North Wall $=26.913$ psf \quad South Wall $=26.913$ psf \quad East Wall $=\quad 26.913$ psf \quad West Wall $=26.913$ psf
qz : Windward Wall Velocity Pressures at various heights per Eq. 26.10-1

	North Elevation		South Elevation		East Elevation		West Elevation	
Height Above Base (ft)	Kz	qz	Kz	qz	Kz	qz	Kz	
0.00	0.849	24.71	0.849	24.71	0.849	24.71	0.849	
5.00	0.849	24.71	0.849	24.71	0.849	24.71	0.849	
10.00	0.849	24.71	0.849	24.71	0.849	24.71	0.849	
15.00	0.849	24.71	0.849	24.71	24.71			
20.00	0.902	26.25	0.902	26.25	0.849	24.71	0.849	
Pressure Coefficients				GCpi Values when elevation receives positive external pressure				

Pressure Coefficients

GCpi Values when elevation receives positive external pressure
GCpi : Internal pressure coefficient, per sec. 26.13 and Table 26.13-1

Specify Cp Values from Figure 27.3-1 for Windward, Leeward \& Side Walls
Cp Values when elevation receives positive external pressure

	North	South	East	West
Windward Wall	0.80	0.80	0.80	0.80
Leeward Wall				
Side Walls	-0.70	-0.70	-0.70	-0.70

Wind Pressures

Wind Pressures when NORTH Elevation receives positive external wind pressure

	Positive Internal	Negative Internal		
Leeward Wall Pressures	0.0 psf			
Side Wall Pressures	-16.013 psf			
Windward Wall Pressures . . Height Above Base (ft)	. Positive Internal Pressure (psf)	Negative Internal Pressure (psf)		
0.00		16.80		16.80
5.00		16.80		16.80
10.00		16.80		16.80
15.00		16.80		16.80
20.00		17.85		17.85

Wind Pressures when SOUTH Elevation receives positive external wind pressure

	Positive Internal	Negative Internal
Leeward Wall Pressures	0.0 psf	0.0 psf
Side Wall Pressures	-16.013 psf	-16.013psf
Windward Wall Pressures Height Above Base (ft)	Positive Internal Pressure (psf)	Negative Internal Pressure (psf)

STRUCTURAL PHIL
PHIL VAN HEYNINGEN, PE
7675 NAHAHUM CANYON ROAD
CASHMERE, WA 98815
structuralphil@gmail.com

Project Title: New Home for Pattie and Dave Coulter
Engineer: $\quad \mathrm{S} / \mathrm{P}$
Project ID: 28PV21
Project Descr:Two - Story @ 35465 Rueppell Ave

ASCE 7-16 Wind Forces, Chapter 27, Part I
Lic. \#: KW-06009465

0.00	16.80	16.80
5.00	16.80	16.80
10.00	16.80	16.80
15.00	16.80	16.80
20.00	17.85	17.85

Wind Pressures when EAST Elevation receives positive external wind pressure

	Positive Internal	Negative Internal		
Leeward Wall Pressures	0.0 psf	0.0 psf -16.013psf		
Side Wall Pressures	-16.013 psf			
Windward Wall Pressures Height Above Base (ft)	Positive Internal Pressure (psf)	Negative Internal Pressure (psf)		
0.00		16.80		16.80
5.00		16.80		16.80
10.00		16.80		16.80
15.00		16.80		16.80
20.00		17.85		17.85

Wind Pressures when WEST Elevation receives positive external wind pressure

	Positive Internal	Negative Internal		
Leeward Wall Pressures	0.0 psf	$\begin{array}{r} 0.0 \mathrm{psf} \\ -16.013 \mathrm{psf} \end{array}$		
Side Wall Pressures	-16.013 psf			
Windward Wall Pressures . . . Height Above Base (ft)	. Positive Internal Pressure (psf)	Negative Internal Pressure (psf)		
0.00		16.80		16.80
5.00		16.80		16.80
10.00		16.80		16.80
15.00		16.80		16.80
20.00		17.85		17.85

Story Forces for Design Wind Load Cases

Values below are calculated based on a building with dimensions $B \times L \times h$ as defined on the "Basic Values" tab.
Wind Shear Components (k) Eccentricity for (ft)

Load Case	Windward Wall		Ht. Range	Wind Shear Components (k) Eccentricity for (ft)						
	Windward Wall	Building level		Trib. Height	In "Y" Direction	In "X" Directio	Shear	"X" Shear		(ft-k)
CASE 1	North	Level 2	$16.50{ }^{\prime}$-> 22.00	5.50	-3.60	---	---	---		---
CASE 1	North	Level 1	$5.50{ }^{\prime}$-> 16.50^{\prime}	11.00	-6.85	---	---	---		---
CASE 1	South	Level 2	16.50' -> 22.00	5.50	3.60	---	---	---		---
CASE 1	South	Level 1	$5.50{ }^{\prime}$-> 16.50'	11.00	6.85	---	---	---		---
CASE 1	East	Level 2	$16.50{ }^{\prime}$-> 22.00	5.50	---	-6.91	---	---		---
CASE 1	East	Level 1	$5.50{ }^{\prime}$-> $16.50{ }^{\prime}$	11.00	---	-13.14	---	---		---
CASE 1	West	Level 2	$16.50{ }^{\prime}$-> 22.00	5.50	---	6.91	---	---		---
CASE 1	West	Level 1	5.50 '-> 16.50'	11.00	---	13.14	---	---		---
CASE 2	North	Level 2	16.50' -> 22.00	5.50	-2.70	---	---	$5.55+$	+/-	15.0
CASE 2	North	Level 1	$5.50{ }^{\prime}$-> 16.50'	11.00	-5.14	---	---	$5.55+$	+/-	28.5
CASE 2	South	Level 2	16.50' -> 22.00	5.50	2.70	---	---	$5.55+$	+/-	15.0
CASE 2	South	Level 1	5.50 '>> 16.50'	11.00	5.14	---	---	$5.55+$	+/-	28.5
CASE 2	East	Level 2	$16.50{ }^{\prime}$-> 22.00	5.50	---	-5.18	9.92	--- +	+/-	51.4
CASE 2	East	Level 1	5.50 '-> 16.50'	11.00	---	-9.86	9.92	--- +	+/-	97.8

Project Title: New Home for Pattie and Dave Coulter
Engineer: S/P
Project ID: 28PV21
Project Descr: Two - Story @ 35465 Rueppell Ave

Printed: 14 JUN 2021. 9.44AM

Values below are calculated based on a building with dimensions B $\times \mathrm{L} \times \mathrm{h}$ as defined on the "General" tab.

STRUCTURAL PHIL
PHIL VAN HEYNINGEN, PE
7675 NAHAHUM CANYON ROAD
CASHMERE, WA 98815
structuralphil@gmail.com

Project Title: New Home for Pattie and Dave Coulter Engineer: S/P
Project ID: 28PV21
Project Descr:Two - Story @ 35465 Rueppell Ave

ASCE 7-16 Wind Forces, Chapter 27, Part I

Lic. \#: KW-06009465

DESCRIPTION: WIND BASE SHEAR

Case 4	North \& West	South \& East	-5.88	11.29	$+/-$	144.6
Case 4	South \& West	North \& East	5.88	11.29	$+/-$	144.6
Case 4	South \& East	North \& West	5.88	-11.29	$+/-$	144.6
Min per ASCE 27.1.5	North	South	-9.77	---	---	
Min per ASCE 27.1.5	South	North	9.77	--	--	
Min per ASCE 27.1.5	East	West	---	-18.74	--	
Min per ASCE 27.1.5	West	East	---	18.74	---	

ASD WORKING LEVEL FORCES

NORTH SOUTH $=5,862$ LB
EAST WEST $=11,244 \mathrm{LB}$

STRUCTURAL PHIL
PHIL VAN HEYNINGEN, PE
7675 NAHAHUM CANYON ROAD
CASHMERE, WA 98815
structuralphil@gmail.com

Project Title: New Home for Pattie and Dave Coulter
Engineer: S/P
Project ID: 28PV21
Project Descr:Two - Story @ 35465 Rueppell Ave

Site Class, Site Coeff. and Design Category

Site Classification "E" : Shear Wave Velocity must be less than 600 ftsec		=	E	ASCE 7-16 Table 20.3-1
Site Coefficients Fa \& Fv	Fa	=	1.00	ASCE 7-16 Table 11.4-1 \& 11.4-2
(using straight-line interpolation from table values)	Fv	=	2.00	
Maximum Considered Earthquake Acceleration	$\begin{aligned} & S_{M S}=\mathrm{Fa}^{*} \mathrm{Ss} \\ & S_{M 1}=\mathrm{Fv}^{*} \mathrm{~S}^{2} \end{aligned}$	=	1.330	ASCE 7-16 Eq. 11.4-1
		$=$	1.357	ASCE 7-16 Eq. 11.4-2
Design Spectral Acceleration	$\begin{array}{ll} S_{D S}=S & M S^{*} 2 / 3 \\ S_{D 1}=S & M_{1}^{*} 2 / 3 \end{array}$	=	0.887	ASCE 7-16 Eq. 11.4-3
		=	0.904	ASCE 7-16 Eq. 11.4-4
Seismic Design Category		=	D	ASCE 7-16 Table 11.6-1 \& -2
Resisting System				ASCE 7-16 Table 12.2-1

Basic Seismic Force Resisting System .
Bearing Wall Systems
15.Light-frame (wood) walls sheathed w/wood structural panels rated for shear resistance.

Response Modification Coefficient " R "	$=$	6.50	Building height Limits :	
System Overstrength Factor " Wo "	$=$	3.00	Category "A \& B" Limit:	No Limit
Deflection Amplification Factor " Cd "	$=$	4.00	Category "C" Limit:	No Limit
NOTE! See ASCE 7-16 for all applicable footnotes.		Category "D" Limit:	Limit =65	
		Category "E" Limit:	Limit $=65$	
		Category "F" Limit:	Limit $=65$	

Lateral Force Procedure

Equivalent Lateral Force Procedure
The "Equivalent Lateral Force Procedure" is being used according to the provisions of ASCE 7-16 12.8
Determine Building Period
Structure Type for Building Period Calculation: All Other Structural Systems
" Ct " value $=0.020 \quad$ " hn " : Height from base to highest level $=024.0 \mathrm{ft}$
" x " value $=0.75$
" Ta " Approximate fundemental period using Eq. 12.8-7: $\quad \mathrm{Ta}=\mathrm{Ct}^{*}\left(\mathrm{hn}{ }^{\wedge} \mathrm{x}\right)=0.217 \mathrm{sec}$
"TL" : Long-period transition period per ASCE 7-16 Maps 22-14 -> 22-17
8.000 sec

Building Period " Ta " Calculated from Approximate Method selected $=0.217 \mathrm{sec}$

STRUCTURAL PHIL
PHIL VAN HEYNINGEN, PE
7675 NAHAHUM CANYON ROAD
CASHMERE, WA 98815
structuralphil@gmail.com
Project Title: New Home for Pattie and Dave Coulter
Engineer: S/P
Project ID: 28PV21
Project Descr:Two - Story @ 35465 Rueppell Ave

ASCE Seismic Base Shear
Printed: 14 JUN 2021. 9:20AM
File: DAVE COULTER.ec6
LLic. \#: KW-06009465
DESCRIPTION: COULTER BASE SHEAR

STRUCTURAL PHIL
PHIL VAN HEYNINGEN, PE
7675 NAHAHUM CANYON ROAD
CASHMERE, WA 98815
structuralphil@gmail.com

Project Title: New Home for Pattie and Dave Coulter
Engineer: $\quad \mathrm{S} / \mathrm{P}$
Project ID: 28PV21
Project Descr:Two - Story @ 35465 Rueppell Ave

Torsional Analysis of Rigid Diaphragm
Printed: 14 JUN 2021, 10:53AM
File: DAVE COULTER.ec6
Lic. \#: KW-06009465
DESCRIPTION: RELATIVE RIGIDITY FOR LOWER LEVEL
General Information
IBC 2018, CBC 2019, ASCE 7-16

STRUCTURAL PHIL
PHIL VAN HEYNINGEN, PE
7675 NAHAHUM CANYON ROAD
CASHMERE, WA 98815
structuralphil@gmail.com
Project Title: New Home for Pattie and Dave Coulter
Engineer: $\quad \mathrm{S} / \mathrm{P}$
Project ID: 28PV21
Project Descr:Two - Story @ 35465 Rueppell Ave

Torsional Analysis of Rigid Diaphragm
Printed: 14 JUN 2021, 10:53AM
File: DAVE COULTER.ec6
Lic. \# : KW-06009465 Soffware copyright ENERCALC, INC. 1983-2020, Build:12.20.5.3

DESCRIPTION: RELATIVE RIGIDITY FOR LOWER LEVEL
Wall Information

Label: BOAT GARAGE MIDDLE	X Wall C.G. Location		Length	
Wall Deflections (Stiffness) for 1.0 kip load : Along Wall "y" Dir $1.4919 \mathrm{E}-002$ in Along Wall "x" Dir $9.8787 \mathrm{E}+006$ in	Y Wall C.G. Location Wall Angle CCW Wall Fixity	$\begin{gathered} 0 \mathrm{ft} \\ 0 \mathrm{deg} \\ \text { Fix-Fix } \end{gathered}$	Height Thickness E-Bending E - Shear	$\begin{gathered} 7 \mathrm{ft} \\ 0.5 \mathrm{in} \\ 1 \mathrm{Mpsi} \\ 1 \mathrm{Mpsi} \\ \hline \end{gathered}$
Label : \quad BOAT GARAGE RIGHT Wall Deflections (Stiffness) for 1.0 kip load : Along Wall "y" Dir $3.1007 \mathrm{E}-002$ in Along Wall "x" Dir $1.3172 \mathrm{E}+007$ in	X Wall C.G. Location Y Wall C.G. Location Wall Angle CCW Wall Fixity	$\begin{gathered} 32.5 \mathrm{ft} \\ 0 \mathrm{ft} \\ 0 \mathrm{deg} \\ \text { Fix-Fix } \end{gathered}$	Length Height Thickness E - Bending E - Shear	$\begin{aligned} & 3 \mathrm{ft} \\ & 7 \mathrm{ft} \\ & 0.5 \mathrm{in} \\ & 1 \mathrm{Mpsi} \\ & 1 \mathrm{Mpsi} \end{aligned}$
Beam Information				
Label : REAR MIDDLE COL	X Beam C.G. Location Y Beam C.G. Location Beam Angle CCW Beam Fixity	$\begin{gathered} 58.25 \mathrm{ft} \\ 37 \mathrm{ft} \\ 0 \mathrm{deg} \\ \text { Fix-Fix } \end{gathered}$	1-xx I-yy E - Bending	144 in^4 144 in^4 58 Mpsi
Label : REAR RIGHT COL	X Beam C.G. Location Y Beam C.G. Location Beam Angle CCW Beam Fixity	$\begin{gathered} 71 \mathrm{ft} \\ 37 \mathrm{ft} \\ 0 \mathrm{deg} \\ \text { Fix-Pin } \end{gathered}$	I-xx I-yy E - Bending	144 in^4 144 in^4 58 Mpsi
Label: RIGHT FRONT COL	X Beam C.G. Location Y Beam C.G. Location Beam Angle CCW Beam Fixity	$\begin{gathered} 71 \mathrm{ft} \\ 4 \mathrm{ft} \\ 90 \mathrm{deg} \\ \text { Fix-Fix } \end{gathered}$	$\begin{aligned} & \text { I-xx } \\ & \text { I-yy } \\ & \text { E-Bending } \end{aligned}$	144 in^4 144 in $^{\wedge} 4$ 58 Mpsi
Label: RIGHT SECOND	X Beam C.G. Location Y Beam C.G. Location Beam Angle CCW Beam Fixity	$\begin{gathered} 71 \mathrm{ft} \\ 25.5 \mathrm{ft} \\ 90 \mathrm{deg} \\ \text { Fix-Fix } \end{gathered}$	$1-x x$ $1-y y$ E - Bending	144 in^4 144 in $^{\wedge} 4$ 58 Mpsi
Label: RIGHT THIRD	X Beam C.G. Location Y Beam C.G. Location Beam Angle CCW Beam Fixity	$\begin{gathered} 71 \mathrm{ft} \\ 15.5 \mathrm{ft} \\ 90 \mathrm{deg} \\ \text { Fix-Fix } \end{gathered}$	$1-x x$ 1-yy E - Bending	144 in^4 144 in $^{\wedge} 4$ 58 Mpsi
ANALYSIS SUMMARY	Maximum shear forces applied to resisting elements. Eccentricity with respect to Center of Rigidity			

Resisting Element	Load Angle	Max Shear along Member Leral $\mathrm{y}^{\text {y }} \mathrm{y}$ " Axis				Max Shear along Member Local "x-x" Axis		
		X-Ecc (ft)	Y-Ecc (ft)	Shear Force (k)	Lod Angle	X-Ecc (ft)	Y-Ecc (ft)	Shear Force (k)
BOAT GARAGE L	0	-3.65	-16.70	0.201	90	-0.10	-14.85	0.000
AT GARAGE MIDD	0	-3.65	-16.70	0.418	90	-0.10	-14.85	0.000
JAT GARAGE RIGr	0	-3.65	-16.70	0.201	20	-0.10	-14.85	0.000
ARPORT VESTIBUI	90	-3.65	-13.00	3.023	0	-0.10	-14.85	0.000
ELEVATOR REAR	0	-0.10	-14.85	1.637	90	-0.10	-14.85	0.000
:RONT STAIRWELI	0	-3.65	-16.70	0.625	- 90	-0.10	-14.85	0.000
INTERIOR FRONT	90	-3.65	-13.00 \}	1.899	0	-0.10	-14.85	0.000
INTERIOR REAR	90	-3.65	-13.00	0.983	0	-0.10	-14.85	0.000
LEFT WALL	45	-6.72	-15.77	7.923	$\{0$	-0.10	-14.85	0.000
REAR LEFT	0	-0.10	-14.85	8.132	20	-0.10	-14.85	0.000
zEAR MIDDLE COL	0	-0.10	-14.85	3.143) 90	-0.10	-14.85	0.000
REAR RIGHT COL	0	-0.10	-14.85	0.786	90	-0.10	-14.85	0.000
RIGHT FRONT COL	45	-3.65	-16.70	1.122	315	-0.10	-14.85	0.000
RIGHT SECOND	45	-3.65	-16.70	1.675	315	-0.10	-14.85	0.000
RIGHT THIRD	45	-3.65	-16.70	1.457	315	-0.10	-14.85	0.000

STRUCTURAL PHIL
PHIL VAN HEYNINGEN, PE
7675 NAHAHUM CANYON ROAD
CASHMERE, WA 98815
structuralphil@gmail.com
Project Title: New Home for Pattie and Dave Coulter
Engineer: S/P
Project ID: 28PV21
Project Descr:Two - Story @ 35465 Rueppell Ave

Torsional Analysis of Rigid Diaphragm
. 4 JUN 2021. 10.53AM
File: DAVE COULTER.ec6
[Lic. \#: KW-06009465
DESCRIPTION: RELATIVE RIGIDITY FOR LOWER LEVEL
Layout of Resisting Elements

Torsional Analysis of Rigid Diaphragm
Project Descr:Two - Story @ 35465 Rueppell Ave

Software copyight ENERCALC, INC. 1983-2020, Buidi:12:20.5.3.
DESCRIPTION: RELATIVE RIGIDITY FOR LOWER LEVEL

Analysis Notes

This program is designed to distribute an applied shear load to a set of resisting elements.
Each resisting element data entry specifies a deflection along a "major" and "minor" axis due to a $1,000 \mathrm{lb}$ load. Each resisting element may be entered as a wall or a column (whereby the deflection is calculated), or as a generic resisting element with specified deflection. The deflections define the stiffness of each resisting element.

Each resisting element is defined at an (X, Y) location from a datum the user has previously defined. A counter-clockwise rotation of the element can be entered with respect to a traditional " +X " axis line.

A main "shear" load and an optional orthogonal shear load are specified for distribution to the system of resisting elements. In addition the maximum orthogonal dimensions of the structure and minimum accidental eccentricity percentage are specified.

From the entered loads the program calculates resultant force vectors for each angular orientation that is requested. The force is applied to the resisting elements in angular increments to generate a series of resulting direct and torsional shear loads on each element. This application of force is then repeated at angular intervals along an elliptical path defined by the minimum accidental eccentricity.

The end result is a table of direct shear and torsional shear values for each element from the iterated angles of load application and accidental eccentricity. These values are then searched to find the maximum major and minor axis shears applied to each resisting element.

	Project COULTER SHEAR WALLS	Engineer: Phil Date: $5 / 31 / 2021$	Project \# 28 PV 21
	Subject Shearwall Design	Page	

Wall Line: FRONT WALLS AT BOAT GARAGE
Floor Level: LOWER LEVEL

Unit Shear Calculations

Seismic Design Category D, E, or F? \square yes

REFERENCE DRAWINGS FOR SHEARWALL TYPE AND SCHEDULE PLUS HOLDOWNS.
$\begin{aligned} & \text { Lateral Load to Wall Line }=820 \\ & \mathrm{lbs} \\ & \text { Total Length of Shearwalls }=10.0 \\ & \mathrm{ft}\end{aligned}$
Unit Shear Load $(v)=82$ plf

Use Shearwall Type	
EARTHQUAKE	W1ND
P1-6	P1-6

Reference attached shearwall schedule for more information.

Overturning Calculations

Seismic Controlled Design?
yes
(Affects aspect ratio)

```
Terminology: V = Panel Shear (lbs)
W = Panel Self Weight (lbs)
w = Trib. Roof/Floor Load (plf)
\(P_{d l}=D L\) Reaction from Header/Beam (lbs)
\(\mathrm{P}_{\mathrm{u}}=\) Uplift from Shearwall Above (lbs)
OTM = Overturning Moment (ft-lbs)
RM = DL Resisting Moment (ft-lbs)
Equations: \(V=v L\)
\(\mathrm{OTM}=\mathrm{VH}\)
\(R M=0.9\left[(W+w L)(L / 2)+P_{d i} L\right]\)
\(U=(O T M-R M) / L+P_{u}\)
```

Load Check, $\Sigma V=$
Max. Aspect Ratio:
Check Aspect Ratio:
(Ref. IBC Table 2305.3.3, footnote (a), when aspect ratios are exceeded)

$\mathrm{H}(\mathrm{ft})$	$\mathrm{L}(\mathrm{ft})$	V	W	w	Pdl	Pu	Uplift (U)	Req'd Holdown	
7.0	4.0	328	680			0		FDN HD	FLOOR STRAP
7.0	3.0	246	510	45	135	0	162	NA	NA
7.0	3.0	246	510	45	135	0	162	NA	
0.0	0.0	0	0	0	0	0	0	NA	NA
0.0	0.0	0	0	0	0	0	0	NA	NA
0.0	0.0	0	0	0	0	0	0	NA	NA

	Project COULTER SHEAR WALLS	Engineer: Phil Date: $5 / 31 / 2021$	Project \# $28 P V 21$
	Checker: Shearwall Design	Page	
Date:			

Wall Line:	LEFT WALL
Floor Level:	LOWER LEVEL

Unit Shear Calculations

Seismic Design Category D, E, or F? \square yes

REFERENCE DRAWINGS FOR SHEARWALL TYPE AND SCHEDULE PLUS HOLDOWNS.
$\begin{aligned} & \text { Lateral Load to Wall Line }=8,300 \\ & \text { lbs } \\ & \text { Total Length of Shearwalls }=34.0 \mathrm{ft}\end{aligned}$

$$
\begin{aligned}
& \text { Unit Shear Load }(v)=244 \text { plf } \longleftarrow \longleftarrow \frac{\text { WIND }}{\text { P1-6 }}
\end{aligned}
$$

Reference attached shearwall schedule for more information.

Overturning Calculations

Seismic Controlled Design? \square
yes (Affects aspect ratio)

Terminology: V = Panel Shear (lbs)
W = Panel Self Weight (lbs)
w = Trib. Roof/Floor Load (plf)
$\mathrm{P}_{\mathrm{dl}}=$ DL Reaction from Header/Beam (lbs)
$\mathrm{P}_{\mathrm{u}}=$ Uplift from Shearwall Above (lbs)
OTM = Overturning Moment (ft-lbs)
RM = DL Resisting Moment (ft-lbs)
Equations: $V=v L$
$\mathrm{OTM}=\mathrm{VH}$
$R M=0.9\left[(\mathrm{~W}+w L)(\mathrm{L} / 2)+\mathrm{P}_{\mathrm{di}} \mathrm{L}\right]$
$U=(O T M-R M) / L+P_{u}$

Load Check, $\Sigma V=$ 8,300 (Compare w/Load Above)
Max. Aspect Ratio:
2.0

OK
(Ref. IBC Table 2305.3.3, footnote (a), when aspect ratios are exceeded)

$\mathrm{H}(\mathrm{ft})$	$\mathrm{L}(\mathrm{ft})$	V	W	w	Pdl	Pu	Uplift (U)	Req'd Holdown	
	34.0	8,300	6,800					NA	NA
0.0	0.0	0	0	0	0	0	0	FLOOR STRAP	
0.0	0.0	0	0	0	0	0	0	NA	NA
0.0	0.0	0	0	0	0	0	0	NA	NA
0.0	0.0	0	0	0	0	0	0	NA	NA
0.0	0.0	0	0	0	0	0	0	NA	NA

	Project COULTER SHEAR WALLS	Engineer: Phil Date: $5 / 31 / 2021$	Project \# 28 PV21
	Subject Shearwall Design	Page	

Wall Line:	WALL AT ELEVATOR
Floor Level:	LOWER LEVEL

Unit Shear Calculations

Seismic Design Category D, E, or F? \square yes

REFERENCE DRAWINGS FOR SHEARWALL TYPE AND SCHEDULE PLUS HOLDOWNS.
$\begin{aligned} \text { Lateral Load to Wall Line } & =1,637 \mathrm{lbs} \\ \text { Total Length of Shearwalls } & =7.5 \mathrm{ft}\end{aligned}$

Reference attached shearwall schedule for more information.

Overturning Calculations

Seismic Controlled Design?
yes
(Affects aspect ratio)
Terminology: V = Panel Shear (lbs)
W = Panel Self Weight (lbs)
w = Trib. Roof/Floor Load (plf)
$P_{\mathrm{dl}}=$ DL Reaction from Header/Beam (lbs)
$\mathrm{P}_{\mathrm{u}}=$ Uplift from Shearwall Above (lbs)
OTM = Overturning Moment (ft-lbs)
RM $=$ DL Resisting Moment (ft-lbs)
Equations: $V=v L$
OTM = VH
$R M=0.9\left[(\mathrm{~W}+w \mathrm{~L})(\mathrm{L} / 2)+\mathrm{P}_{\mathrm{dl}} \mathrm{L}\right]$
$U=(O T M-R M) / L+P_{u}$

Load Check, $\Sigma V=1,637$ (Compare w/Load Above)
Max. Aspect Ratio:
2.0

Check Aspect Ratio:
OK
(Ref. IBC Table 2305.3.3, footnote (a), when aspect ratios are exceeded)

$\mathrm{H}(\mathrm{ft})$	$\mathrm{L}(\mathrm{ft})$	V	W	w	Pdl	Pu	Uplift (U)	Req'd Holdown	
7.0	7.5	1,637	1,275					FDN HD	FLOOR STRAP
0.0	0.0	0	0	0	0	0	0	NA	NA
0.0	0.0	0	0	0	0	0	0	NA	
0.0	0.0	0	0	0	0	0	0	NA	NA
0.0	0.0	0	0	0	0	0	0	NA	NA
0.0	0.0	0	0	0	0	0	0	NA	NA

Wall Line:	FRONT OF VESTIBULE AT STAIRWELL
Floor Level:	LOWER LEVEL

Unit Shear Calculations

Seismic Design Category D, E, or F? yes

REFERENCE DRAWINGS FOR SHEARWALL TYPE AND SCHEDULE PLUS HOLDOWNS.
$\begin{aligned} & \text { Lateral Load to Wall Line }=623 \mathrm{lbs} \\ & \text { Total Length of Shearwalls }=7.5 \\ &\end{aligned}$

Use Shearwall Type
EARTHQUAKE

P1-6	WIND
P1-6	

Reference attached shearwall schedule for more information.

Overturning Calculations

Seismic Controlled Design?
yes (Affects aspect ratio)

Terminology: V = Panel Shear (lbs)
W = Panel Self Weight (lbs)
w = Trib. Roof/Floor Load (plf)
$P_{\mathrm{dl}}=$ DL Reaction from Header/Beam (lbs)
$\mathrm{P}_{\mathrm{u}}=$ Uplift from Shearwall Above (lbs)
OTM = Overturning Moment (ft-lbs)
RM = DL Resisting Moment (ft-lbs)
Equations: $V=v L$
OTM = VH
$R M=0.9\left[(\mathrm{~W}+\mathrm{wL})(\mathrm{L} / 2)+\mathrm{P}_{\mathrm{dl}} \mathrm{L}\right]$
$\mathrm{U}=(\mathrm{OTM}-R M) / L+\mathrm{P}_{\mathrm{u}}$

Load Check, $\Sigma V=623$ (Compare w/ Load Above)
Max. Aspect Ratio:
Check Aspect Ratio:
2.0

OK
(Ref. IBC Table 2305.3.3, footnote (a), when aspect ratios are exceeded)

$\mathrm{H}(\mathrm{ft})$	$\mathrm{L}(\mathrm{ft})$	V	W	w	Pdl	Pu	Uplift (U)	Req'd Holdown	
	7.5	623	1,275					FDN HD	FLOOR STRAP
0.0	0.0	0	0	0	0	0	0	NA	NA
0.0	0.0	0	0	0	0	0	0	NA	
0.0	0.0	0	0	0	0	0	0	NA	NA
0.0	0.0	0	0	0	0	0	0	NA	NA
0.0	0.0	0	0	0	0	0	0	NA	NA

STRUCTURAL PHIL
PHIL VAN HEYNINGEN, PE
7675 NAHAHUM CANYON ROAD
CASHMERE, WA 98815
structuralphil@gmail.com

Project Title: New Home for Pattie and Dave Coulter Engineer: S/P
Project ID: 28PV21
Project Descr: Two - Story @ 35465 Rueppell Ave

DESCRIPTION: CANTILEVERED COLUMNS - PILASTERS CONTINUE ABOVE FOUNDATION WALL

STRUCTURAL PHIL
PHIL VAN HEYNINGEN, PE
7675 NAHAHUM CANYON ROAD
CASHMERE, WA 98815
structuralphil@gmail.com

Project Title: New Home for Pattie and Dave Coulter
Engineer: S/P
Project ID: 28PV21
Project Descr:Two - Story @ 35465 Rueppell Ave

DESCRIPTION: CANTILEVERED COLUMNS - PILASTERS CONTINUE ABOVE FOUNDATION WALL

Code References

Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16
Load Combinations Used : IBC 2018

Column Cross Section
Column Dimensions: 12.0 in Square Column, Column Edge to
Rebar Edge Cover $=1.50$ in

Column Reinforcing : 4 - \#6 bars @ corners,

STRUCTURAL PHIL
PHIL VAN HEYNINGEN, PE
7675 NAHAHUM CANYON ROAD
CASHMERE, WA 98815
structuralphil@gmail.com

Project Title: New Home for Pattie and Dave Coulter
Engineer: \quad S/P
Project ID: 28PV21
Project Descr:Two - Story @ 35465 Rueppell Ave

DESCRIPTION: CANTILEVERED COLUMNS - PILASTERS CONTINUE ABOVE FOUNDATION WALL

Maximum Deflections for Load Combinations

STRUCTURAL PHIL
PHIL VAN HEYNINGEN, PE
7675 NAHAHUM CANYON ROAD
CASHMERE, WA 98815
structuralphil@gmail.com
Project Title: New Home for Pattie and Dave Coulter
Engineer: $\quad \mathrm{S} / \mathrm{P}$
Project ID: 28PV21
Project Descr:Two - Story @ 35465 Rueppell Ave

DESCRIPTION: CANTILEVERED COLUMNS - PILASTERS CONTINUE ABOVE FOUNDATION WALL

Sketches

STRUCTURAL PHIL
PHIL VAN HEYNINGEN, PE
7675 NAHAHUM CANYON ROAD
CASHMERE, WA 98815
structuralphil@gmail.com
Project Title: New Home for Pattie and Dave Coulter
Engineer: $\quad \mathrm{S} / \mathrm{P}$
Project ID: 28PV21
Project Descr:Two - Story @ 35465 Rueppell Ave

STRUCTURAL PHIL
PHIL VAN HEYNINGEN, PE
7675 NAHAHUM CANYON ROAD
CASHMERE, WA 98815
structuralphil@gmail.com
Project Title: New Home for Pattie and Dave Coulter
Engineer: $\quad \mathrm{S} / \mathrm{P}$
Project ID: 28PV21
Project Descr:Two - Story @ 35465 Rueppell Ave

DESCRIPTION: CANTILEVERED COLUMNS - PILASTERS CONTINUE ABOVE FOUNDATION WALL

Concrete Column P-M Interaction Diagram

STRUCTURAL PHIL
PHIL VAN HEYNINGEN, PE
7675 NAHAHUM CANYON ROAD
CASHMERE, WA 98815
structuralphil@gmail.com
Project Title: New Home for Pattie and Dave Coulter
Engineer: $\quad \mathrm{S} / \mathrm{P}$
Project ID: 28PV21
Project Descr:Two - Story @ 35465 Rueppell Ave

DESCRIPTION: CANTILEVERED COLUMNS - PILASTERS CONTINUE ABOVE FOUNDATION WALL

Concrete Column P-M Interaction Diagram

STRUCTURAL PHIL
PHIL VAN HEYNINGEN, PE
7675 NAHAHUM CANYON ROAD
CASHMERE, WA 98815
structuralphil@gmail.com
Project Title: New Home for Pattie and Dave Coulter
Engineer: $\quad \mathrm{S} / \mathrm{P}$
Project ID: 28PV21
Project Descr:Two - Story @ 35465 Rueppell Ave

DESCRIPTION: CANTILEVERED COLUMNS - PILASTERS CONTINUE ABOVE FOUNDATION WALL

Concrete Column P-M Interaction Diagram

STRUCTURAL PHIL
PHIL VAN HEYNINGEN, PE
7675 NAHAHUM CANYON ROAD
CASHMERE, WA 98815
structuralphil@gmail.com

Project Title: New Home for Pattie and Dave Coulter
Engineer: S/P
Project ID: 28PV21
Project Descr:Two - Story @ 35465 Rueppell Ave

DESCRIPTION: CANTILEVERED COLUMNS - PILASTERS CONTINUE ABOVE FOUNDATION WALL

Concrete Column P-M Interaction Diagram

STRUCTURAL PHIL
PHIL VAN HEYNINGEN, PE
7675 NAHAHUM CANYON ROAD
CASHMERE, WA 98815
structuralphil@gmail.com

Project Title: New Home for Pattie and Dave Coulter
Engineer: S / P
Project ID: 28PV21
Project Descr:Two - Story @ 35465 Rueppell Ave

STRUCTURAL PHIL
PHIL VAN HEYNINGEN, PE
7675 NAHAHUM CANYON ROAD
CASHMERE, WA 98815
structuralphil@gmail.com
Project Title: New Home for Pattie and Dave Coulter
Engineer: $\quad \mathrm{S} / \mathrm{P}$
Project ID: 28PV21
Project Descr:Two - Story @ 35465 Rueppell Ave

STRUCTURAL PHIL
PHIL VAN HEYNINGEN, PE
7675 NAHAHUM CANYON ROAD
CASHMERE, WA 98815
structuralphil@gmail.com
Project Title: New Home for Pattie and Dave Coulter
Engineer: S/P
Project ID: 28PV21
Project Descr:Two - Story @ 35465 Rueppell Ave

Concrete Column
Lic. \# : KW-06009465
DESCRIPTION: CANTILEVERED COLUMNS - PILASTERS CONTINUE ABOVE FOUNDATION WALL

Concrete Column P-M Interaction Diagram

STRUCTURAL PHIL
PHIL VAN HEYNINGEN, PE
7675 NAHAHUM CANYON ROAD
CASHMERE, WA 98815
structuralphil@gmail.com
Project Title: New Home for Pattie and Dave Coulter
Engineer: S/P
Project ID: 28PV21
Project Descr:Two - Story @ 35465 Rueppell Ave

DESCRIPTION: CANTILEVERED COLUMNS - PILASTERS CONTINUE ABOVE FOUNDATION WALL

Concrete Column P-M Interaction Diagram

STRUCTURAL PHIL
PHIL VAN HEYNINGEN, PE
7675 NAHAHUM CANYON ROAD
CASHMERE, WA 98815
structuralphil@gmail.com

Project Title: New Home for Pattie and Dave Coulter
Engineer: S/P
Project ID: 28PV21
Project Descr:Two - Story @ 35465 Rueppell Ave

DESCRIPTION: CANTILEVERED COLUMNS - PILASTERS CONTINUE ABOVE FOUNDATION WALL

Concrete Column P-M Interaction Diagram

STRUCTURAL PHIL
PHIL VAN HEYNINGEN, PE
7675 NAHAHUM CANYON ROAD
CASHMERE, WA 98815
structuralphil@gmail.com

Project Title: New Home for Pattie and Dave Coulter
Engineer: $\quad \mathrm{S} / \mathrm{P}$
Project ID: 28PV21
Project Descr:Two - Story @ 35465 Rueppell Ave

DAVE \& PATTIE COULTER RESIDENCE DETAILS

	SCHEDULE
DTL-1	EAVE \& GUTTER DETAIL
DTL-2	EAVE @ RAKE DETAIL
DTL-3	OVERHANG DETAIL
DTL-4	DECK EDGE @ SOUTH DETAIL
DTL-5	DECK @ GARAGE DOOR DETAIL
DTL-6	DECK EDGE @ EAST CARPORT WALL DETAIL
DTL-7	DECK EDGE @ SOUTH CARPORT DETAIL
DTL-8	DECK @ OUTDOOR KITCHEN DETAIL
DTL-9	DECK BEAM CONNECTION @ EXISTING HOUSE DETAIL
DTL-10	COLUMN @ TIMBER FRAME PATIO COVER DETAIL
DTL-11	GARAGE WALL @ FOUNDATION DETAIL
DTL-12	CLIPPED EAVE DETAIL
DTL-13	B-4 to B-5 \& B-18 STEEL PLATE CONNECTION DETAIL
DTL-14	STEEL STAIR CONNECTION TO WALL DETAIL
DTL-15	DECK STAIR @ EXISTING HOUSE DETAIL
DTL-16	VERT. SIDING AT BOTTOM OF WALL w/ HORIZ. NAILER \& DRAINAGE STRIP
DTL-17	VERT. SIDING AT BOTTOM OF WALL DRAINAGE STRIP DETAIL

EAVE AND GUTTER DETAIL

SCALE

$1-1 / 2^{\prime \prime}=1^{\prime}-0 "$

EAVE @ RAKE DETAIL

DECK EDGE @ SOUTH DETAIL

SCALE

$1-1 / 2^{\prime \prime}=1^{\prime}-0{ }^{\prime \prime}$

DECK @ GARAGE DOOR DETAIL

SCREW TO TOP RAIL OF DESIGN RAIL. COUNTER SINK AND PLUG

WOOD TOP CAP w/ LED LIGHTING

FEENY CABLE RAIL SYSTEM 2-3/8" SQUARE POST, \longrightarrow

 MAX SPACING 6'-0" o.c.

ATTACHMENT SCREW, (2 PER SIDE, 4 PER POST) SET END PAVER IN MASTIC STANCHION, ATTACHED TO STRUCTURE

COLOR MATCHED FLASHING 8/4 x 6 AZEK TRIM 1×4 HORIZ. AZEK CLADDING o/ WEATHER PROOFING

SHEAR WALL

DECK EDGE @ SOUTH CARPORT DETAIL

DECK @ OUT DOOR KITCHEN DETAIL

COLUMN @ TIMBER FRAME PATIO COVER DETAIL

GARAGE WALL @ FOUNDATION DETAIL

$$
\text { SCALE } \quad 3^{\prime \prime}=1^{\prime}-0^{\prime \prime}
$$

SCALE

NOT ALL COMPONENTS ARE SHOWN FOR CLARITY

B-4 to B-5 \& B-18 STEEL PLATE CONNECTION DETAIL

SCALE

DECK STAIR @ EXISTING HOUSE DETAIL

Vertical Siding At Bottom of Wall With Horizontal Nailer and Drainage Strip Detail

Corrugated Lath Strip ${ }^{1 / 4}$ (CL5 3845 316) and Vented Edge Metal ${ }^{\text {l/m }}$ (VMEM 3168)

MTI details are created from sources deemed to be reliable. However, MTl does not guarantee the accuracy or completeness of any information, nor shall be held responsible for amy errors, omissions, or darnages arising out of the use of this information. These details are creabed with the understanding that MTl is providing information but is not attempting to render engineering or other professional service. If such services are required, the assistance of an appropriate professon should be sought. Use MTl materials in stract conformance with local building codes and regulations. Consult local code/code officials prior to installation. It is the buyer's responsibility to ensure that MTI materials are used in strict conformance with local building codes and regulations.

Vertical Siding At Bottom of Wall Drainage Detail

Sure Cavity ${ }^{\text {In }}$ (SC 5016 or SC 5032) or Gravity Cavity ${ }^{\text {N }}$ (GC 1816 or GC 1832) and Vented Edge Metal ${ }^{\text {TM }}$ (VMEM 3168)

MT details are created from sources deemed to be reliable. However, MTl does not guarantee the accuracy or completeness of any information, nor shall be held responsible for a ry errors, omissions, or damages arising out of the use of this information. These details are creabed with the understanding Ehat MTl is providing information but is not attempting to render engineening or other professional service. If such services are required, the assistance of an appropriate profession should be sought. Use MII materials in strict conformance with local building codes and regulations. Consult local code/code officials prior to installation. It is the buyer's responsibility to enisure that MTI materials are used in strict conformance with local building codes and regulations.

April 29, 2021
Ronald Coulter
105 N. Emerson
P. O. Box 2323

Chelan, WA 98816
ron.coulterarchitects@gmail.com

Re: Soil Assessment at 35465 Rueppell Ave. in the Airport area of Pacific City, Oregon Project \#21-04-Cou

Dear Mr. Coulter:
At your request, I have completed a review of the soil conditions at your property. This investigation included document research and knowledge of the area. Site inspection will be made during the excavation and additional information may be incorporated at that time.

The property is nearly flat and about one-third of an acre in size. The rear half of the property is about 3 feet lower than the front half. The property fronts Rueppell Avenue to the southwest for about 100 feet and extends about 130 feet to the northeast. The property borders the Pacific City Airport to the east for 100 feet.

According to the USDA Natural Resources Conservation Service, the soil on the site is Urban land-Udorthents complex, with a 0 to 7 percent slope. In this soil profile, silty clay loam begins at a depth of about 14 inches and continues down several feet. When firm, silty clay loam is typically acceptable for constructing a foundation, with an allowable soil bearing pressure of 1500 pounds per square foot. In order to protect the silty clay from wet weather and degradation during construction activities, a layer of crushed rock should be placed over the soil and thoroughly compacted. The crushed rock layer should be about 4 inches thick.

Since this area does flood, the soil could be weakened when saturated. In order to further improve the site and secure the foundation, excavate the soil below the footings and replace it with pit-run rock. I recommend that the rock fill be at least 2 feet deep and a minimum width of 5 feet, centered on the footing. The rock should be mechanically compacted. Cover the pitrun rock with crushed rock for constructability.

RONALD COULTER

Inspection at 35465 Rueppell Ave.
Pacific City, OR

Drainage from the new building should be disposed of on the surface at least 10 feet away from the house, preferably to the east. Due to the topography of the area and the flat site, foundation drains are not necessary.

Please contact me if you have any questions, or if the County requires additional information.
Sincerely,
Morgan Civil Engineering, Inc.

Jason R. Morgan, PE
Professional Engineer

cc: Project File \#21-04-Cou
<V:\21-04-Cou\Reports\Coutler site evaluation.docx>

NOTES

THIS IS A TOPOGRAPHIC MAP OF TAX LOT 4800, PARCEL 1 AND PARCEL 2 OF PARTITION PLAT 2014-14. THE PURPOSE OF THIS MAP IS TO SHOW THE OPOGRAPHY SEE MAPS P-733, PARTTON PLAT 20014-14, TLAMOOK INFORMATION SEE MAPS P-
COUNTY SURVEY RECORDS.
elevatons are based on gps observations mit an opus solution,

COULTER ARCHITECTURE

David and Pattie Coulter House Addition
Project Performance and Product Specification

Division 1: General Requirements:

Division 2: Site Construction:

Project to be constructed per the 2018 edition of the International Residential code (IRC) and the NFPA 70, and the National electrical code designated with the l-codes and Tillamook County codes. Direct all subcontractor and suppliers to comply with the same.

See structural General Notes on drawing S-1.5
All modifications and changes shall proceed through the architect for approval.

Shop Drawing and sample submittals required:
Steel fabrication
Windows and doors and hardware
Drywells and holding tanks, propane tanks.
SIP Panels roof panels including engineering calculations.

Warmboard Sub floor, complete system.
Finished siding, and details
Other items as noted
Dry Wells, and catch basins, located on site Plan, submit details, source: H2 pre-Cast, Wenatchee. Final locations TBD.

COULTER ARCHITECTURE

David and Pattie Coulter House Addition
Project Performance and Product Specification

Utilities: final locations per the drawings

Division 3: Concrete:

Division 4: Masonry
Division 5: Metals:

See Structural General Notes:

Architectural concrete: All exterior facing walls, and exposed interior walls, as depicted on the drawings, shall have a special finish as follows: Using new form panels with aligned snap ties as shown, shall be a smooth finish without rock pockets nor any voids.

Snap ties to be plastic cone type. See enclosed.
Provide a mock-up panel 4' x 8' with anticipated seal breaker and snap tie configuration. Mock-up panel to be subsequently buried on site.

Grouts: Non Shrink Basalite or equal
Pavers: Unilock, concrete Abbostsford, concrete
N/A
Steel frames and beam connections, welding certification required, shop drawings required, see Structural General Notes, Shop Prime

Steel tubes are HSS type steel.
Exposed Fabricated steel to be Powder Coated and non-exposed, shop primed.

Color to be selected and submitted with shops.
Steel Stair: submit shop drawing for review and approval, construct so that it can be hot dip

COULTER ARCHITECTURE

David and Pattie Coulter House Addition
Project Performance and Product Specification
galvanized. Provide attachment as located on the drawings (with stand off through the siding rain screen, and provide footings located per the shop drawings, and sized as shown on the drawings.

Division 6: Wood and Plastics:

Exterior wall sheathing: $1 / 2$ "" CDX (Exposure 1 rated) (most places nailed as shear walls, see shear wall diagrams.)

Dimensional beams and lumber are D.F, \#1 or better, Glue lams are framing dimensional 24/V8 unless stated otherwise. Interior Glue Lams are architectural grade.

Sub Floor: 1 1/8" Plywood WarmBoard-S on upper floor, installed per the manufactures instruction, shop drawings and required. Finish floors over WarmBoard-S to be installed per instruction manual, Installation over Joists.

Contact: Shane Banks: 206.276.376 sbanks@warmboard.com

Sill Seal at all concrete plates, and SIP Panels with Owens corning, foam seal R.

Fasteners: Sub-floor screws Simpson, Strong drive, WSV, see cut sheet, $23 / 4$ " screws.

Wood to steel: Simpson TB screws per table enclosed.

COULTER ARCHITECTURE
David and Pattie Coulter House Addition
Project Performance and Product Specification
SIP Panels by Insulspan, installation per Factory shop drawings, contractor/ installer to check shop drawing for detail and dimensional fit. See Insulspan construction manual.

Seal all joints on the warm side with factory tape See Structural notes on the drawings for perimeter nailing. Provide continuous V.B on warm side under the furring.

Contact: Dave Stevenson, 604.523.3762, cell 778.846.9512

Siding: Azek or approved equal. Vertical application with "hidden attachments" (screws) using the 2.5 cortex color matched plugs.

Siding mounted on horizontal nailer and drainage strip (corrugated Lath Strip (CLS 3845-316) by MTI and vented edge metal (VMEM 3168 wrapped with Polypropylene fabric bug screen.

Division 7: Thermal and Moisture:
Poly Wall Liquid Wrap 2300, or 2400 roll on
60 mil. Min thickness.
Joint filler 2200 with closed cell backer rod
2100 for windows and doors

STEP ONE, PREPARE AND CLEAN: (View factory video prior to application)
A. Using a stiff brush, followed by damp rag, and wipe away debris, sawdust, dirt

COULTER ARCHITECTURE
David and Pattie Coulter House Addition
Project Performance and Product Specification
or foreign matter of all surfaces including the rough opening and 6 inches around the outside perimeter of the window opening on the sheathing itself. Please note that if the substrate is wet, no problem ... Poly Wall Blue Barrier Liquid Flashing 2100 loves water.
B. Provide positive slope on the rough opening sill per Window Manufacturer's Installation Specifications. IMPORTANT: If you choose to do this you must account in advance for the space in the rough opening you take up with the positive slope or your window will not fit.

STEP TWO, DETAIL ANY VOID UP TO 3/4" :

A. Apply PW BB 2200 Joint Filler with a plastic trowel or putty knife to holes, cracks, imperfections in rough opening \& sheathing surrounding opening.
B. In the corners, feel free to use your index finger with a damp cloth over it to press product completely into corner and smooth.
C. On average after 30 minutes product is ready for the next step depending on Relative Humidity and Temperature. If it doesn't stick to your finger upon touch it's ready.

STEP THREE: APPLY BB 2100 TO ROUGH OPENINGS:

COULTER ARCHITECTURE
David and Pattie Coulter House Addition
Project Performance and Product Specification
A. Starting on the top inside of the rough opening apply BB 2100 with sausage gun and trowel smooth so wood is not visible. Minimum 35 mils wet continuous film (46 SF / Gal coverage rate)
B. Apply in 6 -inch to 12 -inch lengths, complete inside of rough opening.
C. Apply to outside of rough opening on sheathing, approx 6 -inches wide.
D. Allow approximately 30 minutes for the flashing to set up depending on Relative Humidity and Temperature. It might still be "tacky" but as long as product does not attach to your finger at touch then your ready to install your window. STEP FOUR, INSTALL WINDOWS AND DOORS:
A. Install your window or door per manufacturer's specifications and instructions.
B. Many manufacturers call for a compatible sealant to be applied prior to the window being installed into the opening. Poly Wall Blue Barrier 2200 Joint Filler can be used for this purpose.
C. After window has been installed as directed by manufacturer specifications apply Poly Wall Blue Barrier Liquid Flashing 2100 over header and jamb flanges of the window itself with gun and trowel tying it into the existing cured fluid membrane that you had applied earlier. Make sure to completely cover the flange with fluid applied product.

COULTER ARCHITECTURE

David and Pattie Coulter House Addition
Project Performance and Product Specification
D. It is important to leave the sill flange on the window at the bottom un-flashed with fluid flashing to allow moisture relief in the event of a window leakage.

Wet Set Installation of the rain screen hat channels: Recoat everywhere a penetration of the water barrier occurs with Blue Barrier Joint Filler 2200 when installing the hat channels that hold the Corten siding. This applies to any penetration.

Note: This project shall meet the Blower test. Review manufacturers Video before doing the work. Follow the manufactures recommendations on all steps.

Alternate W.B. Henry Blueskin VP 100, self adhered Water resistive Barrier. Install per the manufactures requirements, including moisture content and raining conditions requirements.

Rain Screen components:
Furring: Masonry Technology, Inc. Vent Edge metal (VMEM 3168), Corrugated Lath Strip (CLS 3845-316), Wrap bottom Lath Strip with Polypropylene Fabric.

Alternate: Advanced Building products, Inc. , Watairvent furr strip and Watairvent starter strip.

Roofing: Taylor Metal products, 24 Ga . Cool Kynar 500, color to be determined. Limit penetrations of the metal roof to plumbing vents, and fireplace flue, all other openings, including fans and dryer vent with INOVATE DryerJack, and Inovate Dryer Box through the walls.

Roof: Roof temporary protection during construction: GAF Deck Armor, during

COULTER ARCHITECTURE

David and Pattie Coulter House Addition
Project Performance and Product Specification
construction, with Ice Guard at the perimeter 4 feet wide.

Final roof deck membrane: Under the metal roof, apply 11 mm VaproShield, Warp Shield RS rain screen.

Vapor Barrier (class 1) required on warm side of all SIP panels, Factory supplied tape to all joints.

Insulation:
Floors: R-30 Rock Wool between the garage and upper floor.

Walls: Closed cell foam, Foamular NGX, in all walls, seal all wall to roof intersection and floor intersections, all corners air tight, 6"=wall R-33, 8"= wall-R-37.5

SIP panels, 12" -R-59.1, Factory applied. High performance GPS Insulation. Factory tape all joints. Apply vapor barrier on entire warm side.

Division 8: Doors \& Windows:
Windows and exterior doors: Loewen windows and doors except as shown.

The south facing glass, windows A \& B on the schedule, to be design to resist 125 MPH wind loading.

Shop drawings and color samples required

[^1]

COULTER ARCHITECTURE

David and Pattie Coulter House Addition

Project Performance and Product Specification

Division 9: Finishes:

Division 10: Specialties:

Interior details and cabinets to follow.
Floors: $3 / 4$ " hardwood, acclimated and stained all sides, all rooms except the shower and $1 / 2$ bath.

Alternate floor: Pre-finished hardwood engineered floor system, submit specs.

Ceilings in the great room, master bedroom, bathroom, and entry are 5/8" T\& G \# 1 D.F. with recess at the perimeter for LED cont. lighting strips. Exterior soffits to match.

IPE Exterior handrail: finish with Messmwe's U.V. Plus, with LED cont. lighting.

Gacodeck: All exterior deck and stair walking surface to be covered with Gacodeck, an Acrylic Polymer blend not to be installed over more than an 18% moisture content.

Use Gacodeck Polyester Reinforcing tape on the stair nosing and terminations

Gacodeck Priner to be utilized in cold weather applications.

Gacodeck Granules to be used on the waling surfaces.

Color: Standard Oyster, or to match concrete pavers as close as possible. A special color may be needed, and as approved by the Architect.

Fireplace: Flare fireplaces, see plan, submit shop R.I. dwgs, Flue to exit SIP Panels, submit detail.

COULTER ARCHITECTURE

David and Pattie Coulter House Addition
Project Performance and Product Specification
Toilet and Bath accessories TBD
Handicap Bars: provide backing, and see interior elevations.

Shower doors: frameless glass. Submit shop drawings.

Handrails:
Cable railings- Keuka Studios, powder coated, $42^{\prime \prime}$ mounted off set with powder coated sleeves as shown on the details.

Screens by US Centor S2 double screen, 102 $3 / 8^{\prime \prime} \times 124^{\prime \prime}$, layout to be determined.

Division 11: Equipment:

Division 12: furnishings:
Division 13: Special Construction:

Security systems TBD
Appliances: supplied by the owner, installed by the contractor.

N/A
Roof structure: SIP Panels are Insulspan, with Graphite Polystyrene cores (GPS) 12" plumb cut (R59.1 @ 25 deg F.) Shop Dwgs. and Engineers stamp required. Limit penetrations to plumbing only and fireplace, all other penetrations to be side wall, utilizing dryer vents and grills by Seiho SB-P, and JSP grilles.

Warmboard on main floor 11/8" Plywood, with a sealer (glued and screwed.) Installation.
Shop installation drawings required.

COULTER ARCHITECTURE

David and Pattie Coulter House Addition
Project Performance and Product Specification
Division 14: Conveying Systems: Elevator by: Symmetry Elevator Solutions, (or approved equal) inline gear drive at the top. See specification cut sheet.

Car size 40×54, accordion door, same side opening.

All electronics to be installed above elevation 17^{\prime} and the car to be set to wait at the upper level.

Division 15: Mechanical:

Division 16: electrical:
Water heater: 150 Gal. heat pump configuration.
HVAC, Mini-Split, (no duct work) design build by Sub-Contractor and collaboration with Architect.

Mitsubishi or approved equal.
Room units Located on the fireplace wall in recessed openings on the fireplace wall, see plan.

Electrical floor pians- Preliminary layout Dwgs. E-1.1 and E-1.2

Lutron square Trim: typical, color to be selected.
Ceiling Fans: Big Ass Fan, 6' dia. Remote controls

Special outlets: Locate in the field, Kitchen counter: Mockett pop up in counter and bar.

Walk through with the subcontractor required prior to installation.

COULTER ARCHITECTURE
David and Pattie Coulter House Addition
Project Performance and Product Specification

Bath Room Heated floors:	Master Bath shower: The heated floor system to be Schluter Ditra-Heat-Duo system, install per the manufacturer, with controls. See plan for area.
Miscellaneous:	Glass: Discuss with the owner, Electrochromic adjustable performance glass, and bird strike technology prior to ordering glass, guardianglass.com, Bird1st
Window shades:	J-Geiger, R series, with $21 / 2 "$ dia. Jamb brackets, clear anodized. Black out fabric for the master suites, and Translucent for the living room and dining Room, remote controlled, wired in motors, coordinated with Lutron, see Electrical.
Patio gas fired tables:	Paloform or approved equal

[^2]Hot limb deck floor drain
$60^{\prime \prime}$

- Linear Shower Drain - Pattern Grate

P.O. Box 8064, Atlanta, GA 31106 p: 877.398.8110 f. 877.388.1239
e: sales@lineardrains.com www.lineardrains.com

Channel for Easy Cleaning

Section $A-A^{\prime}$
Standard Linear Drain Lengths

MODEL ZB110 VENTILATION FAN

FEATURES

UltraGreen ${ }^{\text {TM }}$ Energy Saving DC Motor

- DC motor for efficiency well beyond ENERGY STAR ${ }^{\text {® }}$ requirements.
- Multi-speed capability ideal for meeting ASHRAE 62.2, LEED and ENERGY STAR ${ }^{\oplus}$ for Homes requirements. Can be used to comply with CA Title 24, as well as local/spot ventilation needs.

UltraSilent ${ }^{\text {TM }}$ S ound Technology

- HVI certified, best-achievable <0.3 Sone level provides nearly silent operation for a relaxing environment.
- State-of-the-art blower and duct outlet design smooths airflow.
- High tech DC motor designed for nearly silent operation.

UltraSmart ${ }^{\text {TM }}$ C ontrol Technology

- Powerful operation maintained over a wide range of real-world installations (CFM ratings maintained through at least $0.25^{\prime \prime}$ static pressure).
- Infinitely adjustable low cfm setting allows precise adjustment to prevent over-ventilating and maximize efficiency.
- Adjustable time delay sets how long fan will run on high speed before returning to a continuous lower speed.

UltraQuick ${ }^{\text {TM }}$ Installation Technology

- Unique telescoping mounting frame fits through retrofit drywall opening to allow easy installation from the room side. No attic access needed!
- Captive screws allow for easy new construction installation.
- Mounting frame positioning tabs provide easy vertical positioning for new construction.
- Easy to insert and remove snap-in housing. No screws required!
- Easy to insert and remove snap-in blower.
- Inside or outside duct connector and knockout plate mounting provides flexibility for new construction or retrofit.
U.L. Listed for use over bathtubs and showers when connected to a GFCI protected branch circuit (ceiling mount only).

3-year warranty.

DIMENSIONS (Inches)

ENERGY STAR

Broan-NuTone LLC Hartford, Wisconsin www.broan.com 800-558-1711

REFERENCE	QTY.	REMARKS	Project
			Location
		Architect	
		Engineer	
		Contractor	
		Submitted by	Date

HVI PERFORMANCE

Airflow Rate Setting (CFM)	$6^{\prime \prime}$ Duct				
	Airflow (CFM)	Sound (Sones)	Power (Watts)	Efficacy (CFM/ Watt)	Airflow (CFM)
	110	<0.3	7.7	14.2	110
100	100	<0.3	7.0	14.2	100
90	90	<0.3	6.4	14.0	90
80	80	<0.3	5.8	13.7	80
70	70	<0.3	5.1	13.7	70
60	60	<0.3	4.6	13.0	60
50	50	<0.3	4.1	12.1	50
40	40	<0.3	3.7	10.8	40
30	30	<0.3	3.3	9.0	30

HVI-2100
CERTIFIED
RATINGS comply with new testing technologies and procedures prescribed by the Home Ventilating Institute, for off-the-shelf products, as they are available to consumers. Product performance is rated at 0.1 in. static pressure, based on tests conducted in a state-of-the-art test laboratory. Sones are a measure of humanly-perceived loudness, based on laboratory measurements.

ELECTRICAL \& WEIGHT

Volts	Hz	Amps	Shipping Weight (lbs.)
120	60	0.2	12.3

FAN CAPABILITY

Ultra-thin LED Recessed Light

- Uses 90% less wattage compared to comparable traditional lights

LED driver (non-dimmable)

- Easy to install: LED light fixture and LED driver (included) are all detachable.
- Very small, low profile design; its height is less than $3 / 4$ inch.
- Sturdy aluminum housing.
- High quality diffuser achieves even and soft light output.
- Incredibly bright, this High Power LED Recess Light is the perfect way to modernize your home or business by saving loads of money on your energy and maintenance costs.

Specifications

Wattage	12.5 Watt Max. (LED fixture: approx. 9 Watt, LED driver: approx. 3.5 Watt)
LED Chip	High-Power LED (24 LEDs)
LED forward Current	700 mA
Beam Angle	Approx. 110°
Light Color	Warm White (approx. 3000K), Neutral White (approx. 4200K), Cool White (approx. 6000K)
Light Output	Warm White: 560 Im , Neutral White: 6001m, Cool White: 620 Im
Color Rendering Index	Cool white: $\mathrm{Ra}>70$, Warm white: $\mathrm{Ra}>75$
Life Span	50,000 hours
Voltage	LED driver: 100~240VAC (UL rated)
Dimensions	LED light fixture: height: $1.3 \mathrm{~cm}\left(0.52^{\prime \prime}\right)$, diameter: 16.2 cm ($6.38^{\text {" }}$) LED driver (default, non-dimmable): L: $65 \mathrm{~mm}\left(2.6^{\prime \prime}\right) \times \mathrm{W}: 35 \mathrm{~mm}\left(1.4^{\prime \prime}\right) \times \mathrm{H}: 23 \mathrm{~mm}\left(0.9^{\prime \prime}\right)$
Casing Color	Painted white
Housing	LED light body: Aluminum, Cover: PMML plastic diffuser
Protection Rating	CE, RoHS
Operating Temperature	$-10^{\circ} \mathrm{C} \sim+40^{\circ} \mathrm{C}$

Installation Diagram

LED Channel Strip

DIMENSIONS

$\left(\sum_{L \text { tste }}^{0}\right)_{0}$

APPLICATION

The LCS family of LED strip lights combine high-performance LEDs, highlyengineered optics to traditional designs to bring you the most advanced line of LED Strip Lights on the market. Multiple lumen packages mean there is an LCS that is just right for your lighting needs.

FEATURES

- Available in $2^{\prime}, 4^{\prime}$, or 8^{\prime} lengths
- Optional integral emergency battery pack
- Surface mount or suspended
- Heavy die-formed steel channel
- All luminaires are built to UL 1598 and 2108 standards, and bear appropriate ETL labels

FEATURES \& SPECIFICATIONS

INTENDED USE - LBL LED wraparound provides a digital lighting platform to deliver general ambient lighting for surface-mount applications. The LED system delivers long life and excellent color to ensure a quality, low-maintenance lighting installation. Ideal for closets, storage rooms, hallways, and offices.
CONSTRUCTION — Metal parts are die formed from code-gaugesteel. Prismatic diffuser is 100% acrylic with sonically welded luminous ends. Continuous side flanges on fixture body provide light trap and continuous diffuser support to prevent accidental opening and simplify maintenance.
Finish: Five-stage iron phosphate pretreatment assures superior paint adhesion and rust resistance. Painted parts finished with high-gloss, high-reflectivity baked white polyester enamel (low VOC).
OPTICS - Curved prismatic diffuser with linear side prisms and highly transmissive overlay minimizes lamp image and provides high-angle brightness control. Luminous end plates soften appearance for improved aesthetics.

ELECTRICAL - Long-lifeLEDs, coupled with high-efficiencydrivers, provide extended servicelife. 90% LED lumen maintenance at 60,000 hours ($\mathrm{L} 90 / 60,000$).
LED drivers deliver dimming from 0-10V control signal.
LISTINGS - CSA certified to U.S. and Canadian standards. Damplisted.
DesignLights Consortium ${ }^{\circ}$ (DLC) qualified product. Not all versions of this product may be DLC qualified. Please check the DLC Qualified Products List at www.designlights.org/OPL to confirm which versions are qualified.
WARRANTY - 5 -year limited warranty. Complete warranty terms located at www.acuitybrands.com/CustomerResources/Terms and conditions.aspx
Note: Actual performance may differ as a result of end-user environment and application.
All values are design or typical values, measured under laboratory conditions at $25^{\circ} \mathrm{C}$.
Specifications subject to change without notice.

All dimensions are inches (centimeters) unless otherwise indicated.

Catalog Number
Notes
Type

Contractor Select

 LBLED
Low-Profile Curved-Basket LED Wraparound

MOUNTING DATA

Individual Installation -
Two single-stem hangers required.
Row Installation -
One hanger per fixture plus one row required.

OBDERINGINFORMAIION
See LBL Configurable specification sheet for additional lumen packages and control options.

Catalog number	UPC	Description	Lumens	Color temperature	Lens type	Voltage	Wattage ${ }^{2}$	Pallet qty	Standard carton पty.
LBL2 LP835 ${ }^{\text {a }}$	753573917564	2'LED Wraparound	2,248	3500 K	Patterned \#12 acrylic	120-277	23	112	1
LBL2 LP840'	753573917595	2'LED Wraparound	2,267	4000 K	Patterned \#12 acrylic	120-277	23	112	1
LBL4LP835	753573917601	4^{\prime} ED Wraparound	4,564	3500 K	Patterned 12 acylic	120-277	41	56	1
LBL4LP840 ${ }^{\text {a }}$	753573917632	4'ED Wraparound	4,600	4000 K	Patterned\# 12 acrylic	120-27	41	56	1
LBL4 347 LP835	753573917649	4'LEDWraparound	4,564	3500 K	Patterned\#12 acrylic	347	41	56	1
LBL4 347 LP840	820476010279	4' LED Wraparound	4,600	4000 K	Patterned \#12 acrylic	347	41	56	1

LBL Low Profile LED Wraparound

PHOTOMETRICS

LBL2 LP840, 2266.8 delivered lumens, test no. LTL27384P5, tested in accordance to IESNA LM-79.

pfpc	Coefficients of Utilization		
	20\%		
	80\%	70\%	50\%
pw	70\%50\%30\%	50\%30\%10\%	50\%30\%10\%
0	116116116	112112112	105105105
1	10610298	999592	$\begin{array}{llll}92 & 89 & 87\end{array}$
2	$98 \quad 9084$	878176	827773
3	$\begin{array}{llll}90 & 80 & 72\end{array}$	$\begin{array}{ll}78 & 71\end{array} 65$	$\begin{array}{ll}73 & 67\end{array} 63$
${ }^{4}$	837264	$70 \quad 6256$	$66 \quad 5954$
U	$\begin{array}{ll}77 & 65\end{array} 56$	$\begin{array}{llll}63 & 5549\end{array}$	$60 \quad 53 \quad 48$
6	715950	$\begin{array}{llll}57 & 49 & 44\end{array}$	$54 \quad 4742$
7	$66 \quad 54 \quad 45$	$52 \quad 45 \quad 39$	$\begin{array}{lll}50 & 43 & 38\end{array}$
8	624941	$48 \quad 4035$	$\begin{array}{llll}46 & 39 & 34\end{array}$
9	$\begin{array}{llll}58 & 45 & 38\end{array}$	$\begin{array}{llll}44 & 37 & 32\end{array}$	$42 \quad 36$
10	$54 \quad 4234$	413429	$\begin{array}{llll}39 & 33 & 29\end{array}$

Zonal Lumen Summary			
Zone	Lumens	\% Lamp	\% Fixture
$0^{\circ}-30^{\circ}$	692	30.5	30.5
$0^{\circ}-40^{\circ}$	1082	47.7	47.7
$0^{\circ}-60^{\circ}$	1669	73.6	73.6
$0^{\circ}-90^{\circ}$	2010	88.7	88.7
$90^{\circ}-120^{\circ}$	124	5.5	5.5
$90^{\circ}-130^{\circ}$	162	7.1	7.1
$90^{\circ}-150^{\circ}$	225	9.9	9.9
$90^{\circ}-180^{\circ}$	257	11.3	11.3
$0^{\circ}-180^{\circ}$	2267	100.0	100.0

LBL4 LP840, 4600.4 delivered lumens, test no. LTL27386P25, tested in accordance to IESNA LM-79.

TM870LA

Our complete line of $\mathrm{P} \& S$ Decorator devices combine today's design aesthetics with ease of installation, reliability and performance that never goes out of style.

features \& benefits

- Designer-style, satin-finish rocker style.
- High-impact resistance thermoplastic construction.
- Narrow back body leaves more room for wires in the box.
- Extra-long, through-body strap eliminates floating installations and imperfect applications.
- For covering patents, see www.legrand.us/patents.

specifications

General Info

Color: Light Almond
Product Series: TradeMaster
Number Of Poles: 1
Style: Decorator

Listing Agencies/Third Party Information

CSA Listing Info: C22.2 111
CSA Standard: Yes
UL Listing No: UL20
UL Standard: Yes
UN SPS C: 39121704

Dimensions

885TRLA

Decorator Tamper-Resistant Receptacle. 15 amp, 125 volt, Light Almond.

features \& benefits

- Meets 2008 National Electrical Code Tamper-Resistant requirements.
- Protects children: patented shutter system-now with black "invisi-shutters" that disappear for an invisible effect-helps prevent improper insertion of foreign objects.
- High-impact resistant thermoplastic construction.
- Extra-long strap.
- Quickloop wire looping aid
- Long-term blade retention.
- Longer tri-drive screws for easier 12 AWG looping.
- Extra-large circuit break-off tabs.
- Side-access push wire release.
- Ultrasonic welding of face to back body.
- Side wire accepts \#12 - \#14 AWG solid wire.
- Push wire accepts \#14 AWG solid only.
- Superior protection than traditional outlet caps or protection plates.
- Low profile face.
- Traditional contoured face (3232 models).
- Self-grounding models provide automatic ground clip.
- For covering patents, see www. legrand.us/patents.

specifications

General Info

Color: Light Almond
Type: Tamper-Resistant

SWP26LA

Uniquely constructed P\&S Screwless Wall Plates have a no-dirt catching channel around the perimeter, ensuring a clean, uniform look.

features \& bencitis

- Unbreakable, flexible polycarbonate construction conforms to uneven drywall.
- Smooth, sleek look hides the screws and highlights the style.
- Automatic alignment pins ensure wall plate fits perfectly.
- Smooth perimeter eliminates channel that can catch dirt.
- Includes two-piece, non-conductive polycarbonate subplate to help speed installation.

SWP262LA

Uniquely constructed P\&S Screwless Wall Plates have a no-dirt catching channel around the perimeter, ensuring a clean, uniform look.

callies is ochellis

- Unbreakable, flexible polycarbonate construction conforms to uneven drywall.
- Smooth, sleek look hides the screws and highlights the style.
- Automatic alignment pins ensure wall plate fits perfectly.
- Smooth perimeter eliminates channel that can catch dirt.
- Includes two-piece, non-conductive polycarbonate subplate to help speed installation.

specifications

General Info

Color: Light Almond
Special Features: Screwless
Style: Decorator

Listing Agencies/Third Party Information

Federal Spec: No
UN SPS C: 39121704

Dimensions

Height U S: 4.87"
Width U S: 4.912"

Technical Information

SWP263LA

Uniquely constructed P\&S Screwless Wall Plates have a no-dirt catching channel around the perimeter, ensuring a clean, uniform look.

features \& benetis

- Unbreakable, flexible polycarbonate construction conforms to uneven drywall.
- Smooth, sleek look hides the screws and highlights the style.
- Automatic alignment pins ensure wall plate fits perfectly.
- Smooth perimeter eliminates channel that can catch dirt.
- Includes two-piece, non-conductive polycarbonate subplate to help speed installation.

specifications

General Info

Color: Light Almond
Special Features: Screwless
Style: Decorator
Listing Agencies/Third Party Information
UN SPS C: 39121704

Dimensions

Height U S: 4.87"
Width U S: 6.724"

Technical Information

Elevator Drive Systems

Winding Drum Drive System

General

- Overhead minimum of 7'10" [94 inches) with a $7^{\prime} 0$ " interior car height

Mechanical Equipment

- 208/230 VAC, 60HZ, 30 amp , singlephase power supply for motor controller
- Two $3 / 8$ " 7×19 galvanized aircraft cable [14400 lbs . breaking strength]
- Inverter-controlled variable speed winding drum drive unit and 3 hp motor
- Manual lowering device

Safety Features

- Slack rope safety device
- Two upper and one lower final limits

Typical Hoistway Options
All hoistway dimensions reference interior dimensions-finished wall to finished wall.

Single Opening
Rail Left, Right-Hand Door (shown)
Rail Right, Left-Hand Door (opposite)

Car Gatel Door	Car Size	Widh	Depth	Rail C/L	Door C/L	Clear Opening
Accordion or Collapsible [2]	36x48	501/2"	541/4"	271/2"	283/4"	331⁄2"
	36×60	$501 / 2^{\prime \prime}$	661/4"	331/2"	283/4"	331/2"
	40×54	541/2"	601/4"	$32^{\prime \prime}$	323/4"	331/2" 3 (3)
Symmetry Safety 3-Panel	36×48	52"	55"	31"	301/4"	33"
	36×60	52"	$67^{\prime \prime}$	$331 / 2^{\prime \prime}$	301/4"	33"
	40×54	541/2"	67 "	31"	323/4"	33" 3)

Opposite Opening
Rail Right, Left-Hand Door, Right-Hand Door
Rail Left, Right-Hand Door, Left-Hand Door

Car Gatel Door	Car Size	Width	Depth	Rail C/L	Door C/L	Clear Opening
Accordion or Collapsible [2]	36x48	501/2"	54"	$27^{\prime \prime}$	283/4"	331⁄2"
	36x60	501/2"	66"	33"	283/4"	331/2"
	40×54	541/2"	60"	30"	323/4"	331/2" 3 (3)
Symmetry Safety 3-Panel	36×54	52	61	31"	301/4"	$33^{\prime \prime}$
	36x60	52"	673/4"	34"	301/4"	33
	40×54	541/2"	613/4"	31"	323/4"	33" 3]

(1) Inline Gear Drive motor extends into the access hatch
(2) Collapsible gates will have a clear opening approximately 7 " less than shown
(3) $36^{\prime \prime}$ clear opening available-door centerlines may change

Doon centerines apply to 30° " doors. excepl where otherwise noted.

SMART VENT

Product Catalog

Geto Pratuct Caialos
Certification
0 Downioarour Nationos

Check out our FAQs

Still Have a
Question?
Contact our Sales and Suppor! Office
(877) 441-8368

- minasmaryentsom

About Dual Function Vents

Application

These vents are used for a home with a crawispace or any enclosed area that desires natural aif ventilation and frod protection

Flood Protection

The vent door is latched closed untit themes m contact with flood water. Entermg flood water hitts the patented internal foats which unfatch and allow the door to rotate open. This allows the flood water to automaticaliy enfer and exit through the frome openng. reteving the pressure from the foundation walis Certifed flood debris clearame is demonstrated with a 3^{3} diameter opening when the flood door is activatod

Ventilation

A bimetal con automatically opens ard closes the ventilation louvers as temperature changes No electricity is required The louvers with be fully closed at $35 F$ and fully open at 75 F . In the event of a flood the internal floats lift to selease the flood door to rotate open and relieve the hydrostatic pressure regardless of the louvers' position, open or closed

Flood Resistant Materials

The Smant Vent product fre is consinucted out of Marine Grado Stanless Steel and is 100% made in the United States. T316L Stainless Steel is renowned for its ability to withstand usage in harsh marine and chemical enviromments, ensurng that cur products will handle everything Mother Nature throws at them Because T315L Staintess Steel is known for its strengh and resistance to cracking, dents, and embotienment if sutized in high proffe profects meant to last decades. Alloyed whth Chrome Nickel and Molybdenum, T316L Stanless Sleel takes the shength of steel and adds protection making it the tilmate fiood resistant matenal

MINIMUM CAVITY HEIGHT PLAN VIEW

GENERAL NOTES: APPLY TO ALL OF THE ABOVE PRODUCTS

1. INSTALLATION MUST BE COMPLETED IN ACCORDANCE WITH BISON INNOVATIVE PRODUCTS SPECIFICATIONS.
2. DRAWINGS NOT TO SCALE.
3. CONTRACTOR'S NOTE: FOR PRODUCT AND COMPANY INFORMATION VISIT www.BisonIP.com
4. ADHERE- INSTALLER MUST ADHERE WITH POLYURETHANE CONSTRUCTION ADHESIVE

F LOW CAVITY HEIGHT PLACEMENT
CAVITY HEIGHTS BELOW $1 / 4^{\prime \prime}$

Level.it / ACCESSORIES	model number	RANGE OF ADJUSTMENT	ADDS	DESCRIPTION	
	LC	2"-43/4"	-	ADJUSTABLE PEDESTAL	
近 1	C1	$1 / 4^{\prime \prime}-11 / 2^{\prime \prime}$	UP TO 1 1/2"	1" COUPLER	
$\frac{\pi}{\pi} \\|$	C4	$21 / 2^{\prime \prime}-4{ }^{\prime \prime}$	UP TO 4"	4" COUPLER	
(88)	VT18 VT316			$\begin{aligned} & \text { 1/8" TABS } \\ & 3 / 16^{\prime \prime} \text { TABS } \end{aligned}$	
为	HD25	$=$	ADDS 1/4"	FIXED HEIGHT	
ก00	HD50	=	ADDS 1/2"	FIXED HEIGHT	
4-0.505	HD75	-	ADDS 3/4"	FIXED HEIGHT	
	LO	$11 / 4^{\prime \prime}-2^{\prime \prime}$	$=$	ADJUSTABLE PEDESTAL	
\longrightarrow	LD4	$1 / 4^{\prime \prime}$ PER FOOT	ADDS 3/8"	BASE LEVELER DISK	
8	B11	=	ADDS 1/16"	FLEXIBLE SHIM SOUND DAMPENING	
	PS1	-	ADDS 1/8"	RIGID SHIM	
	FFB	$=$	ADDS 1/4"	FLOATING FOUNDATION BASE $12^{\prime \prime} \times 12^{\prime \prime} \times 1 / 4^{\prime \prime}$	
	FIB	=	ADDS 11/16"	FLOATING INSULATION BASE 12 " $\times 12^{\prime \prime} \times 11 / 16^{\prime \prime}$	

GENERAL NOTES: APPLY TO ALL OF THE ABOVE PRODUCTS

1. INSTALLATION MUST BE COMPLETED IN ACCORDANCE WITH BISON INNOVATIVE PRODUCTS SPECIFICATIONS.
2. DRAWINGS NOT TO SCALE.
3. CONTRACTOR'S NOTE: FOR PRODUCT AND COMPANY INFORMATION VISIT www.BisonIP.com

LEVEL.IT PEDESTALS
PRODUCT LINE

VT316 / VT18 FIXED HEIGHT 1/8"

HD75
FIXED HEIGHT 3/4"

LC $+\mathbf{C 1}$
$43 / 4^{\prime \prime}-61 / 2^{\prime \prime}$ VERTICAL RANGE

HD25
FIXED HEIGHT 1/4"

LO
1 1/4" - 2" VERTICAL RANGE

HD50
FIXED HEIGHT 1/2"

$2^{\text {L" }}-43 / 4^{\prime \prime}$ VERTICAL RANGE

$\mathrm{LC}+\mathrm{C} 4+\mathrm{C} 4$
9" - 12" VERTICAL RANGE

PRODUCT CHARACTERISTICS
-MAXIMUM DESIGN CAPACITY OF 750 LBS PER PEDESTAL, FACTOR OF SAFETY 3. -SCREW ADJUSTABILITY WHILE PEDESTALS ARE LOADED FOR FINAL. ADJUSTMENT. -IMPERVIOUS TO FREEZE-THAW, WATER, MOLD AND SOLVENT FREE CHEMICALS. -SCORED BASE ALLOWS SUPPORTS TO BE TRIMMED FOR TIGHT AREAS.
-WEIGHT BEARING SYSTEM DOES NOT PENETRATE ROOFING MEMBRANE OR SUBSTRATE. -LARGE FOOTPRINT SPREADS WEIGHT OVER ROOFING MEMBRANE AND SUBSTRATE.
-MAXIMUM CAVITY HEIGHT 12".
GENERAL NOTES: APPLY TO ALL OF THE ABOVE PRODUCTS

1. INSTALLATION MUST BE COMPLETED IN ACCORDANCE WITH BISON INNOVATIVE PRODUCTS SPECIFICATIONS.
2. DRAWINGS NOT TO SCALE.
3. CONTRACTOR'S NOTE: FOR PRODUCT AND COMPANY INFORMATION VISIT www.BisonIP.com

SPECIFICATIONS

CANADA EFFICIENCIES EnerGuide (CSA P.4.1-15) - EnerGuide is a rating used in Camada to measure annual fireplace efliciency

For complete information on this model, please contact us at:

heat clo

No one builds a better fire Wah heatnglo.com Phone: (888) 427-3973
E-mail: info a heatnglo.com
5 facebook.com/HeatandGlo
(1) (1) twitter:com/HeatandGlo

- youtube.com/HeatandGlo

LIMITED LIFETIME WARRANTY ${ }^{3}$
The strongest in the industry, Heat \& Glo provides a limited lifetime warranty on the most important aspects: furebox and heat exchanger.

3: For full warranty cietais see heatnglo.com
-rreplace glass and other surfaces get extremely HOT and can cause severe burns if touched. Do not remove the protective safety screen from the front of the glass. Keep a safe clistance away. To learn more visit wrwwheatnglo

Google. YouTube and Googile Home are trademarks of Google
 Amazon.com, Inc. or rits affiliates.
HNG-1134U-0520

COULTER ARCHITECTS, PLLC

October 26, 2021

Memo to: Melissa Jenck, CFM,

From: Coulter Architects, PLLC
RE: As a response to your letter of August 10, 2021, I have enclosed Drawing revisions to comply with the FEC Form from Bayside Surveying, and also removing all appliances from the lower level of the existing and new lower levels.

Melissa, Please replace the current drawings with the following revised drawings dated Oct. 11, 2021

Enclosures:

Bayside Elevation Certificate, Signed by Dallas and myself as Dave's representative.
Architectural Drawings to be replaced:
Drawing A- 1.1 Upper left, shows the removal of the water Heater, which is being replaced by an on demand water heater on the upper floor.

Drawing A-1.2 shows the new on Demand water heater located in the store room next to the kitchen of the addition, and an on demand water heater in the closet of bedroom \#1 of the existing house.

Drawings A-2.1, A-2.2, and A-2.3 elevations, show the addition of the 10 smart vents discussed in the FEC form, and clarifies the location on both the existing and the new addition as being no more than 12" above grade.

I am sending these drawings both digitally and hard copy so they can be substituted in the existing drawing sets submitted previously.

Thanks for you help clarifying this.
Ronald E. Coulter, AIA, NCARB

Copy all pages of this Elevation Certificate and all attachments for (1) community official, (2) insurance agent/company, and (3) building owner.

SECTION A - PROPERTY INFORMATION		FOR INSURANCE COMPANY USE	
A1. Building Owner's Name David Coulter	Policy Number:		
A2. Building Street Address (in Box No. 35105 Rueppel Ave	Company NAIC Number:		
City Pacific City	ZIP Code		
A3. Property Description (Lot and Block Numbers, Tax Parcel Number, Legal Description, etc.) Tax Lot 4700, 4701 and 48004 S 10W Section 30 BD			
A4. Building Use (e.g., Residential, Non-Residential, Addition, Accessory, etc.) Residential			
A5. Latitude/Longitude: Lat. 45-11-53.826 Long. -123-57-44.371			
A6. Attach at least 2 photographs of the building if the Certificate is being used to obtain flood insurance.			
A7. Building Diagram Number			
A8. For a building with a crawlspace or enclosure(s):			
a) Square footage of crawlspace or enclosure(s) 0.00 sq ft			
b) Number of permanent flood openings in the crawlspace or enclosure(s) within 1.0 foot above adjacent grade 0			
c) Total net area of flood openings in A8.b $\quad 0.00$ sq in			
d) Engineered flood openings? \square Yes \triangle No			
A9. For a building with an attached garage:			
a) Square footage of attached garage 3204.00 sq ft			
b) Number of permanent flood openings in the attached garage within 1.0 foot above adjacent grade 17			
c) Total net area of flood openings in A9.b 3400.00 sq in			
d) Engineered flood openings? \triangle Yes \square No			

SECTION B - FLOOD INSURANCE RATE MAP (FIRM) INFORMATION

B1. NFIP Com Tillamook Cou	$\begin{aligned} & \text { ty Name \& } \\ & 10196 \end{aligned}$	ommunity Number	B2. County Name TILLAMOOK		B3. State Oregon
$\begin{aligned} & \text { B4. Map/Panel } \\ & \text { Number } \\ & 41057 \text { C0855 } \end{aligned}$	B5. Suffix F	$\begin{aligned} & \text { B6. FIRM Index } \\ & \text { Date } \\ & \text { 09-28-2018 } \end{aligned}$	B7. FIRM Panel Effective/ Revised Date 09-28-2018	B8. Flood Zone(s) AE	B9. Base Flood Elevation(s) (Zone AO, use Base Flood Depth) 16.6

B10. Indicate the source of the Base Flood Elevation (BFE) data or base flood depth entered in Item B9:
\square FIS Profile \boxtimes FIRM \square Community Determined \square Other/Source: \qquad
B11. Indicate elevation datum used for BFE in Item B9:NGVD 1929NAVD 1988Other/Source: \qquad
B12. Is the building located in a Coastal Barrier Resources System (CBRS) area or Otherwise Protected Area (OPA)? \square Yes \boxtimes No Designation Date: \qquadCBRSOPA

ELEVATION CERTIFICATE

OMB No. 1660-0008
Expiration Date: November 30, 2022

IMPORTANT: In these spaces, copy the corresponding information from S	FOR INSURANCE COMPANY USE
Building Street Address (including Apt., Unit. Suite, and/or Bldg. No.) or P.O. R 35105 Rueppel Ave	Policy Number:
City State ZI Pacific City Oregon 97	Company NAIC Number
SECTION C - BUILDING ELEVATION INFORMATION (SURVEY REQUIRED)	
C1. Building elevations are based on: \square *A new Elevation Certificate will be required when construction of the buildin C2. Elevations - Zones A1-A30, AE, AH, A (with BFE), VE, V1-V30, V (with BF Complete Items C2.a-h below according to the building diagram specified in Benchmark Utilized: GPS Vertical Datum: Indicate elevation datum used for the elevations in items a) through h) below. NGVD 1929 \square Other/Source: \qquad Datum used for building elevations must be the same as that used for the B a) Top of bottom floor (including basement, crawlspace, or enclosure floor) b) Top of the next higher floor c) Bottom of the lowest horizontal structural member (V Zones only) d) Attached garage (top of slab) e) Lowest elevation of machinery or equipment servicing the building (Describe type of equipment and location in Comments) f) Lowest adjacent (finished) grade next to building (LAG) g) Highest adjacent (finished) grade next to building (HAG) h) Lowest adjacent grade at lowest elevation of deck or stairs, including structural support	ction* \square Finished Construction AE, AR/A1-A30, AR/AH, AR/AO. Rico only, enter meters. Check the measurement used.

SECTION D - SURVEYOR, ENGINEER, OR ARCHITECT CERTIFICATION

This certification is to be signed and sealed by a land surveyor, engineer, or architect authorized by law to certify elevation information. I certify that the information on this Certificate represents my best efforts to interpret the data available. I understand that any false statement may be punishable by fine or imprisonment under 18 U.S. Code. Section 1001.
Were latitude and longitude in Section A provided by a licensed land surveyor? \boxtimes Yes \square No \square check here if attachments.

For Zones AO and A (without BFE), complete Items E1-E5. If the Certificate is intended to support a LOMA or LOMR-F request, complete Sections A, B, and C. For Items E1-E4, use natural grade, if available. Check the measurement used. In Puerto Rico only, enter meters.

E1. Provide elevation information for the following and check the appropriate boxes to show whether the elevation is above or below the highest adjacent grade (HAG) and the lowest adjacent grade (LAG).
a) Top of bottom floor (including basement, crawlspace, or enclosure) isfeetmetersabove orbelow the HAG.
b) Top of bottom floor (including basement, crawlspace, or enclosure) is \qquadfeet \qquad metersabove orbelow the LAG.

E2. For Building Diagrams 6-9 with permanent flood openings provided in Section A Items 8 and/or 9 (see pages 1-2 of Instructions), the next higher floor (elevation C2.b in the diagrams) of the building is \qquadfeetmetersabove orbelow the HAG.

E3. Attached garage (top of slab) is \qquadfeetmetersabove orbelow the HAG.

E4. Top of platform of machinery and/or equipment servicing the building is \qquadfeetmetersabove orbelow the HAG.

E5. Zone AO only: If no flood depth number is available, is the top of the bottom floor elevated in accordance with the community's floodplain management ordinance?Yes $\square \mathrm{N}$ NoUnknown. The local official must certify this information in Section G.

SECTION F - PROPERTY OWNER (OR OWNER'S REPRESENTATIVE) CERTIFICATION

The property owner or owner's authorized representative who completes Sections A, B, and E for Zone A (without a FEMA-issued or community-issued BFE) or Zone AO must sign here. The statements in Sections A, B, and E are correct to the best of my knowledge.

Check here if attachments.

E\&EVATION CERTIFICATE

IMPORTANT: In these spaces, copy the corresponding information from Section A.	FOR INSURANCE COMPANY USE	
Building Street Address (including Apt., Unit, Suite, and/or Bldg. No.) or P.O. Route and Box No.	Policy Number:	
35105 Rueppel Ave		
City	State	ZIP Code
Pacific City	Oregon	Company NAIC Number

If using the Elevation Certificate to obtain NFIP flood insurance, affix at least 2 building photographs below according to the instructions for Item A6. Identify all photographs with date taken; "Front View" and "Rear View"; and, if required, "Right Side View" and "Left Side View." When applicable, photographs must show the foundation with representative examples of the flood openings or vents, as indicated in Section A8. If submitting more photographs than will fit on this page, use the Continuation Page.

ELEVATION CERTIFICATE
vivid ive. ivuu-uuvo

IMPORTANT: In these spaces, copy the corresponding information from Section A.	FOR INSURANCE COMPANY USE	
Building Street Address (including Apt., Unit, Suite, and/or Bldg. No.) or P.O. Route and Box No.	Policy Number:	
35105 Rueppel Ave	State	ZIP Code
City	Oregon	Company NAIC Number
Pacific City		

If submitting more photographs than will fit on the preceding page, affix the additional photographs below. Identify all photographs with: date taken; "Front View" and "Rear View"; and, if required, "Right Side View" and "Left Side View." When applicable, photographs must show the foundation with representative examples of the flood openings or vents, as indicated in Section A8.

COULTER ARCHITECTS, PLLC

February 7, 2022
Hello Melissa;

RE: Dave Coulter project

In response to your 2-3-22 email questions, I have for you the following:

ELEVATOR:

I have enclosed the product cut sheets, which identifies how it is constructed, and he layout.

To reiterate, we discussed this at length back at the beginning, and I have addressed the issues as follows:

The motor is located at the top of the shaft above the car in the up position. This keeps it out of the way of the flooding, as well as the control panel being located above the flood level. (above the concrete lower portion of the ground floor walls.)

This unit is capable of being programmed to return to the upper level when not is use. (at a set time delay.)

The shaft itself is also concrete to match the same configuration of the rest of the ground level walis.

We will also provide a submersible sump pump in the shaft pit to clear out any water that intrudes.

COULTER ARCHITECTS, PLLC

THE EXISTING BUILDING ENTRY:

This has always been the entry to the building, and is an existing stairway with only some minor adjustments. The difference is, instead of opening a garage door for entry, we have a standard person door in a new exterior wall.

The floor is the original concrete garage floor, with new ceramic tile on top.
Any new framing could be treated lumber, which would provide some protection.

VALUE:

We have discussed this previously and we gave you our estimated value number.

Melissa Jenck

From:	ronald coulter ron.coulterarchitects@gmail.com
Sent:	Wednesday, September 29, 2021 9:07 AM
To:	Melissa Jenck
Subject:	EXTERNAL: Project value

[NOTICE: This message originated outside of Tillamook County -- DO NOT CLICK on links or open attachments unless you are sure the content is safe.]

Good morning Melissa,

I know you are at a conference, but will send this along so you have it.

We are currently bidding the job with two contractors, one from Tillamook and one from Pacific City. We don't have the bids yet, so we don't even know what it will cost. With the volatility in the supply chain and the commodities, it's even difficult for the contractors to bid a job accurately without some provisions to adjust prices.

Second, based on the banking requirements, we can't get an appraisal until we have a signed contract with the contractor. This will be a while yet, until we have bids and can select a contractor.

We don't plan on getting two appraisals,

As a professional in this business, I can give you a number based on my experience. In Discussing This With Dave as well.....we would stipulate a price of $\$ 650,000$.

I have not received anything from Dallas yet.

Thanks,
Ron

Statement

Pacific City Joint Water-Sanitary Authority
PO Box 520
Pacific City, OR 97135
(503) 965-6636
www.pcjwsa.com
DAVE AND PATTY COULTER 217 N GRANT ST
GOLDENDALE WA 98620-9513

SPECIAL MESSAGE

ACCOUNT INFORMATION

ACCOUNT:
002685-000
SERVICE ADDRESS:
SERVICE PERIOD:
BILLING DATE:
35465 RUEPPELL AVENUE 04/01/2021 to 04/30/2021 04/30/2021

DUE DATE: 05/17/2021

BILLING DETAIL

METER READING

	Previous	Previous	Current	Current	
Serial No	Read Date	Read	Read Date	Read	Cons
2100022744	$03 / 25 / 2021$	417	$04 / 27 / 2021$	826	409

CURRENT CHARGES
Water 29.8
Sewer 35.06
Streetlights 0.45
Water Capital Improvement Charge 3
Sewer Capital Improvement Charge 5
WWTP Capital Improvement Charge 8.5
TOTAL CURRENT CHARGES 81.81
BILL SUMMARY
PREVIOUS BALANCE 81.89
PAYMENTS RECEIVED 81.89
ADJUSTMENTS 0.00
ADDITIONAL BILLING 0.00
CURRENT CHARGES 81.81
TOTAL AMOUNT DUE 81.81

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT. PLEASE MAKE CHECK PAYABLE TO: PCJWSA

ACCOUNT NUMBER	DUE DATE	TOTAL DUE
$002685-000$	$05 / 17 / 2021$	$\$ 81.81$
Please Indicate Amount Enclosed		

DAVE AND PATTY COULTER 217 N GRANT ST GOLDENDALE WA 98620-9513

י|
PCJWSA
PO BOX 520
PACIFIC CITY OR 97135-0520

Tillamook People's Utility District
PO Box 433
Tillamook, OR 97141-0433

Billing Date	$04 / 08 / 2021$
Account Number	104503
Payment Due	$05 / 03 / 2021$

Office Address:
1115 Pacific Ave, Tillamook, OR 97141
Hours: 7:00 AM-5:30 PM Monday-Thursday
Phone: (503) 842-2535 Fax: (503) 842-4161
Toll Free: (800) 422-2535 Web: www.tpud.org

Billing Summary		
Previous Balance		
Payment Received 03/24/2021	Thank you!	$\$ 128.95$
Balance Forward	$\$ 128.95 \mathrm{CR}$	
Current Charges	$\$ 0.00$	
Total Balance		$\$ 147.66$

```
2132 1 AB 0.428
DAVID M COULTER
    5 2132
217 N GRANT ST
GOLDENDALE WA 98620-9513
```


[^3]RETURN BOTTOM PORTION WITH YOUR PAYMENT. PLEASE DO NOT FOLD, STAPLE, TAPE, OR PAPERCLIP.

DAVID M COULTER PATTIE FRITZ 217 N GRANT GOLDENDALE WA 98620-0000	Amount Due	\$147.66
	Customer Assistance Donation	
	Amount Enclosed	
Home: (360) 508-1050 Work: None on File Cell: None on File	Current Charges Due 05/03/2021	
Please notify us of any changes to your personal information below:	TILLAMOOK PEOPLE'S UTILITY DISTRICT PO BOX 433 TILLAMOOK OR 97141-0433 	اווי\|IIIIIII

Connect With Us

Phone: 503.842.2535 Toll Free: 1.800.422.2535 - Office Hours: Monday - Thursday 7:00 a.m. - 5:30 p.m.
Address: P.O. Box 433 • 1115 Pacific Avenue, Tillamook, OR 97141
Emergency and after hours phone: 503.842.2122 or 1.800.842.2122

Website: www.tpud.org Email: service@tpud.org
SmartHub: An online application to pay your bill, view and monitor energy usage, report outages, and receive account notifications. Visit our website at www. tpud.org to learn more.
Nixle Alerts: Sign up for this alert system that allows us to send you important outage information via text message and/or email. Visit our website at www.tpud.org and click on the Nixle logo to sign up.

Power Outages

If your power goes out: Check your fuses and breakers to ensure the problem is not within your electrical system. Report the outage immediately if you have determined the outage is on the Tillamook PUD system.
How to report a power outage:
By Phone: Call Tillamook PUD's 24-hour operation's center at 503.842.2122 or 1.800.842.2122 to report the location and circumstances of an outage. During large outages, the line may be busy due to the large volume of callers. Please continue to call until you get through or report the outage online.
Online: Use the SmartHub application to report an outage using your mobile device, tablet or personal computer.
For mobile and tablet users, login to your account via the SmartHub app. Once there, select the "Service Status" icon and then select the "Report My Power is Out" option.
When reporting through the Tillamook PUD website, www.tpud.org, click on the red text "Report An Outage" on the left side of the screen and log into your SmartHub account. Follow the prompts to report the outage.

Help Your Neighbors in Need

The Customer Assistance Program (CAP) is Tillamook PUD's emergency assistance program to help spread warmth throughout our community. The long-standing CAP program is designed to assist limited-income families in crisis situations who need help paying their electric bills. Tillamook PUD matches the amount of every donation and it is placed into a fund where it provides twice the assistance. It's easy to make a one-time gift, sign-up for monthly recurring donations, or add extra to your monthly electric bill. Please help your neighbors in need through Tillamook PUD's Customer Assistance Program.

Payment Options

We accept your check, debit card, MasterCard and Visa

Online Payment: Visit our website at www.tpud.org and click on the SmartHub logo. All you'll need is your Tillamook PUD account number, which can be found on your electric bill, and a checking account number or a debit card, MasterCard or Visa.
Budget Billing: If you've lived in the same home for more than 12 months with Tillamook PUD, you may qualify for our Budget Billing plan. With Budget Billing, you make equal payments throughout the year, with a true-up annually.
Paperless Billing: This online resource is easy, convenient and saves resources by eliminating a paper bill each month. Go to SmartHub on our website and enter your email address and password. Click on the "My Profile" button, then click "Update My Printed Bill Settings", "Turn off/on Printed Bill."
Auto Pay: Automatically pay your monthly electric bill directly from your bank account or with a debit card, MasterCard or Visa. Combine Auto Pay with Budget and Paperless Billing to make your monthly payment predictable and simple. Please contact our front office staff to sign up for the Auto Pay option.
Office Counter, Drive-Through, Phone, or Drop Box: Drop by our office, use our drive-up window, or call 503.842 .2535 or 1.800.422.2535, Monday through Thursday, 7:00 a.m. - 5:30 p.m. A drop box is available at our drive through lane to make your payment outside these hours.

Neopor® GPS Smart Insulation

Neopor

- Innovation in Insulation

Neopor ${ }^{\circledR}$ GPS (Graphite Polystyrene) rigid insulation is today's energy-efficient and cost-effective insulation solution for architects, builders and contractors. The table shows data of Neopor ${ }^{\oplus}$ GPS F5300 Plus. \qquad ave Coulter

1) Neopor ${ }^{\oplus}$ GPS meets and exceeds ASTM C578-13, "Standard Specification for Rigid, Cellular Polystyrene Thermal Insulation"; published by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959.
2) R means resistance to heat flow. The higher the R-value, the greater the insulating power. Ask your seller for the fact sheet on R-values.
3) The technical and physical metrics provided in this table are reference values for insulation products made of Neopor GPS. The values and properties may vary depending on how they are processed and produced. The R-value properties are based on 1-1/16 in thickness.

We create chemistry

Material Ingredient Reporting for LEED v4, Option 1 Manufacturer Inventory

BASF Corporation certifies the following information for Neopor ${ }^{\otimes}$ F 5300 Plus - 30570155.
A complete content inventory for this product to $1,000 \mathrm{ppm}$ is provided based on the addenda to Option 1 of the Building product disclosure and optimization - material ingredients credit released by the U.S. Green Building Council on April 5, 2016. The information generated is based on the BASF Product Compliance Management Process which has been third party audited by GreenCircle Certified, LLC (GreenCircle). GreenCircle has verified that BASF's Product Compliance Management System assesses the hazards of all the ingredients that make up a product, including impurities. This assessment has verified all hazard classification, assessment and communication is conducted within the provisions of North American countries' regulatory requirements.

1. Publicly available ingredients are identified by name and Chemical Abstract Service Registration Number (CASRN)
2. Ingredients defined as trade secret or intellectual property have been withheld; however, the role, amount and hazards based on screening for the levels of ingredients presented are reported on this page per the requirements of the Globally Harmonized System of Classification and Labelling of Chemicals rev. 6 (2015).

David Green

Applied Sustainability
BASF Corporation - Construction Chemicals

We create chemistry

Publicly Available Ingredients	
Substance Name	Substance CAS Number
polystyrene	$9003-53-6$
Pentane	$109-66--0$
Graphite	$7782-42-5$
isopentane	$78-78-4$
Sulfonium compounds, C11-14- alkylbis(hydroxyethyl), 2- hydroxyethyl sulfates (salts)	$78169-20-7$

Proprietary Ingredients		
Role for proprietary substances	Ingredient Amount (\% by weight)	Hazard Category
Polymer	$<5 \%$	Below GHS reporting threshold
Additive	$<5 \%$	Below GHS reporting threshold
Additive	$<5 \%$	Below GHS reporting threshold
Additive	$<5 \%$	Below GHS reporting threshold
Additive	$<5 \%$	Below GHS reporting threshold
Additive	$<5 \%$	Below GHS reporting threshold
Additive	$<5 \%$	Below GHS reporting threshold
Residual Monomer	$<5 \%$	Below GHS reporting threshold
Additive	$<5 \%$	Below GHS reporting threshold
Additive	$<5 \%$	Below GHS reporting threshold

Neopor ${ }^{\circledR}$ F 5300 Plus

Application

Neopor*F 5300 Plus is an expandable polystyrene with increased graphite content which is used to manufacture silver-gray colored foams with a very low thermal conductivity.

The fire characteristics of these foams are in conformity with:

- DIN 4102-B1 (flame retardant)
- EN ISO 13501-1 class E

For additional information regarding fire fire behaviour, please contact your local BASF representative.

Neopor F 5300	For block molding, shape molding (minimum wall thickness 30 mm) and Plus
	loose fill applications.

Product description

Expandable polystyrene (EPS) with infrared reflecting additive. Contains uniformly distributed polymeric flame retardant.
Blowing agent (pentane) content approx. 5.3% by weight.

Product	Bead size class	Typical bead size
Neopor F 5300 Plus	$0.9-1.4 \mathrm{~mm}$	$0.8-1.5 \mathrm{~mm}$ $(\geq 95 \%$ by weight)

Physical form

Neopor") F 5300 Plus is supplied in the form of a lentilshaped granulate.

Storage

Neopor ${ }^{5}$ is usually supplied in cardboard containers (octabins). It can be stored in these unopened receptacles for three months before processing.

The octabins should not be exposed to weather conditions (rain, water, snow, frost, and sunlight) and must be protected from damage. They should always be stored in a cool place (below $20^{\circ} \mathrm{C}$ if possible) to minimize loss of blowing agent.

Once containers have been opened, their contents should be used as soon as possible. In the meantime the octabins should be kept tightly sealed.

It is not recommended to stack octabins more than one layer high. In case of double-stacking octabins under controlled conditions, a strong plywood board must be placed between the stacked containers.

Octabins covered with a plastic hood and/or shrinkwrapped should never be double stacked.

	Recom- mended intermediate aging period	Achievable bulk density by single step pre-expansion	
Product	density-range		
Neopor F^{2} 5300 Plus	$12^{*}-20 \mathrm{~kg} / \mathrm{m}^{3}$	$10-48 \mathrm{~h}$	$17 \mathrm{~kg} / \mathrm{m}^{3}$

[^4]
Processing

The raw material must not be mixed with other raw materials in order to comply with the requirements of fire test certificates.

Neopor ${ }^{5}$ is processed into foam in 3 steps.

- Preexpansion

Neopor" F 5300 Plus can be preexpanded to the above-mentioned densities without any problems using discontinuous, state-of-the-art preexpanders. Lower densities can be achieved by double step preexpansion.

- Intermediate aging

The intermediate aging time should be selected depending on the bulk density, the ambient temperature and the intended application. It is usually between 10 and 48 hours.

- Molding

Neopor ${ }^{\text {® }}$ F 5300 Plus can be molded in commercially available block- and shapemolding machines. Due to the slightly lenticular shape of the particles, adjustments to the filling systems of the shapemolding machines may be necessary.

If recycling material is to be added, it must be ensured that the density of the recycling material is as closely as possible to the preexpansion density in order to avoid separation effects in the molds. Moreover it is recommended to work up the recycling material in a dedusting system before use.

For further information regarding processing, please contact your local BASF contact person.

Further information about the properties and uses of Neopor ${ }^{5}$ is given at www.neopor.de

Packaging

Sheets and molded parts made of Neopor must not be packed in transparent films. The use of an opaque/white or dyed film is strongly recommended.

Safety precautions

It should be noted, that during the processing and storage of Neopor. as well as of foams produced from it, explosive blowing agent/air mixtures may be formed by diffusing blowing agent (pentane, LEL 1.3 vol\%).

Therefore, adequate ventilation must be provided at all times. All conceivable ignition sources (open flames, welding sparks, electrical sparks etc.) must be kept away and electrostatic charging must be avoided. Smoking must be strictly prohibited!

It is forbidden to transport Neopore raw material or Neopor foam in unventilated or closed vehicles. Further information is given in the respective safety data sheet.

Industrial hygiene

Pentane escapes during storage and processing of Neopors. The workplace should therefore be well ventilated. Especially when hot-wire cutting the foams, it is important to ensure that the vapours produced are extracted, as they contain small amounts of styrene in addition to pentane.

The regionally applicable workplace concentration limits for styrene and pentane must be observed.

Foodstuffs legislation

Foams made of Neopor shall not be used in direct contact with food.

Note

The data contained in this publication are based on our current knowledge and experience. In view of the many factors that may affect processing and application of our product, these data do not relieve processors from carrying out their own investigations and tests; neither do these data imply any guarantee of certain properties, nor the suitability of the product for a specific purpose. Any descriptions, drawings, photographs, data, proportions, weights etc. given herein may change without prior information and do not constitute the agreed contractual quality of the product. It is the responsibility of the recipient of our products to ensure that any proprietary rights and existing laws and legislation are observed.

35465 Rueppell Avenue PACIFIC CITY, OR

Hydraulics Analysis Report

prepared for
David Coulter
prepared by
Jake Hofeld, P.E.

WATERWAYS
CONSULTING, INC.

March 30, 2021

Contents

INTRODUCTION 2
HYDRAULIC MODELING METHODOLOGY 2
Existing Conditions Model 3
Proposed Conditions Model 3
Boundary Conditions 4
Peak Flow Hydrology 4
RESULTS 4
CONCLUSIONS 4

List of Figures

Figure 1: FEMA FIRM Panel
Figure 2: Hydraulic Analysis Overview Map of Proposed Project
Figure 3: Existing Conditions Site Plan
Figure 4: Proposed Conditions Site Plan
Figure 5: Proposed Conditions Elevation Section

List of Attachments

Attachment A - HEC-RAS Model Output Files

INTRODUCTION

Waterways Consulting Inc. (Waterways) has been retained by David Coulter to evaluate the hydraulic effects on the Nestucca River during a 100-year base flood discharge from a proposed residential structure. The proposed residential structure is located on the east (left) bank floodplain of the Nestucca River at 35465 Rueppell Avenue in Pacific City, Oregon. The existing site is currently a residential singlefamily home with a grassy backyard adjacent to the Pacific City State Airport.

The proposed development on the parcel will add a two-story structure with a second story living space and a ground floor garage with an abutting open carport. A gravel driveway will be graded to provide access to the garage and carport in addition to a retaining wall located at the east edge of the carport. The entire property being developed will occur within the FEMA designated floodway, effective September 28, 2018 (Figure 1).

The following report has been prepared to support floodplain development permitting with Tillamook County for the proposed project and presents our hydraulic analysis of existing and proposed conditions for the 100-year flood event along the Nestucca River within the vicinity of the proposed residential structure. This report is based on the guidance outlined in Section 3.510(9)(a) of the Tillamook County Land Use Ordinance which requires, "...certification is provided by a professional registered civil engineer demonstrating through hydrologic and hydraulic analysis performed in accordance with standard engineering practice that such encroachment shall not result in any increase in flood levels during the occurrence of the based flood discharge."

HYDRAULIC MODELING METHODOLOGY

The Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) has mapped Nestucca River at the project area as a Special Flood Hazard Area (SFHA) within the regulatory floodway Zone AE (Figure 1). Tillamook County provided Waterways with a hydraulic model of the Nestucca River covering the project area for a Letter of Map Revision (LOMR), effective September 24, 2015 (Case. Number 14-10-1727P). The LOMR and corresponding hydraulic model conducted in the United States Army Corps of Engineers (USACE) Hydraulic Engineering Center River Analysis Software (HEC-RAS) by West Consultants updated the previous modeling and FIRM Panels dated August 1, 1978. All elevations are referenced to a NAVD 88 vertical datum. This model was used as the basis for all hydraulic modeling.

Waterways updated the hydraulic analysis using HEC-RAS, version 5.0.7. A one-dimensional hydraulic model was completed to characterize the existing and proposed conditions at the project site during the 100-year recurrence interval peak flow at the Nestucca River. Additional cross sections were added to the provided model in the vicinity of the project area. The two modeling scenarios include the Existing Conditions Model ("Ex. Cond." is the Plan identifier in the model) and the Proposed Conditions Model ("Prop. Cond." is the Plan identifier in the model). Figure 2 shows the proposed project location, cross section locations used in the hydraulic analysis, and the effective FEMA floodplain and floodway boundaries (FEMA 2018).

Existing Conditions Model

Additional cross sections added to the LOMR model were sampled from a terrain surface derived from LiDAR data from the Department of Geology and Mineral Industries (DOGAMI) North Coast collected by Watershed Sciences Inc. in 2009. LiDAR was updated and overlain with existing topographic survey data for the project parcel. The existing topographic survey was provided by the Domus Design Build, dated January 19, 2021 (Figure 3). Bathymetry for the additional cross sections were interpolated from upstream and downstream cross sections of the LOMR model.

The downstream model boundary extends approximately 1.1 miles downstream of the project area and the upstream model boundary extends approximately 2.7 miles upstream of the project area (Figure 2). The bridge crossing geometry at Ferry Street and at Pacific Avenue downstream of the project area were included in the model from drawings provided by Oregon Department of Transportation (ODOT) and Tillamook County. Hydraulic roughness values for the additional cross sections were based on values published in the provided model. Hydraulic roughness values, known as Manning's Roughness, for the additional cross sections are outlined in Table 1.

Table 1. Manning's Roughness for Different Land Use Types

Land Use Type	Manning's ' n '
Channel	0.03
Gravel Driveway	0.03
Open Pervious Areas (grassed)	$0.04-0.05$
Residential Area	0.08
Open Pervious Areas (trees)	0.10

Proposed Conditions Model

The proposed conditions model included the additional cross sections created in the existing conditions model. The existing conditions terrain was updated with the approximate proposed garage structure first floor footprint of 46 feet by 37 feet provided by design drawings supplied from the client (Figure 4). The proposed residential structure was modeled as a blocked obstruction at cross sections located at the upstream and downstream sides of the proposed structure. The location of the proposed structure is approximate due to the surveyed property boundaries being in an arbitrary horizontal datum but is considered accurate enough for the purposes of this analysis. The existing terrain was also updated with the grading of the gravel driveway provided by design drawings supplied from the client (Figures 4 and 5). The proposed open carport finished ground elevation was modeled as a blocked obstruction up to the finished ground elevation of 13.0 feet on the upstream and downstream sides of the proposed structure. The proposed gravel driveway slopes down from the finished floor of the garage and finished ground at the carport to an elevation of 12.67 feet which adds additional gravel fill to cross section located at the downstream side of the proposed structure and existing house. Structural posts supporting the raised roof deck over the carport were not included in the model because these are
assumed to have negligible effect on the river hydraulics (i.e. the river can flow unimpeded through these areas).

Boundary Conditions

The downstream boundary condition used in the two models was set to a known water surface elevation of 14.15 feet (NAVD 88) per the provided model. The downstream boundary condition is located downstream of FEMA Cross Section A near where Nestucca River meets the Nestucca Bay.

Peak Flow Hydrology

According to the FEMA FIS report and the provided model, the 100-year peak flow event for this portion of the Nestucca River is 49,700 cubic feet per second (cfs). Therefore, 49,700 cfs was assumed for the 100-year peak flow (i.e. base flood discharge) in all models.

RESULTS

Results of the hydraulic modeling are presented in Attachment A. These results show that the proposed building will not result in a rise in water surface elevations anywhere in the model. No change between the Existing Conditions Model and Proposed Conditions Model can likely be attributed to the relatively small building footprints and minor grade change as compared to a much larger/wider floodplain area.

CONCLUSIONS

The results of this hydraulic analysis indicated no rise in the 100-year water surface elevations for the Proposed Conditions Model when compared to the Existing Conditions Model. Based on this, the proposed project satisfies the requirement of Section 3.510(9)(a) of the Tillamook County Land Use Ordinance.

REFERENCES

Federal Emergency Management Agency. 2018. Flood Insurance Rate Maps (FIRMs) for Tillamook County (panel 0855), Oregon and Incorporated Areas. September 28, 2018.

Federal Emergency Management Agency. 2018. Flood Insurance Study (FIS) for Tillamook County, Oregon and Incorporated Areas. September 8, 2018.

Domus Design Build. Site Plan Dave and Pattie Coulter 35465 Rueppell Ave. Pacific City, Oregon. January 19, 2021.
U.S. Army Corps of Engineers. Hydrologic Engineering Center. Computer Program HEC-RAS Version 5.0.7 Davis, California. March 2019.
U.S. Army Corps of Engineers. Hydrologic Engineering Center. Hydraulic Reference Manual. Version 5.0 Davis, California. February 2016.

Watershed Sciences. LiDAR Remote Sensing Data Collection Oregon North Coast. Prepared for Department of Geology and Mineral Industries (DOGAMI). December 21, 2009.

West Consultants. Hydraulic Engineering Center River Analysis Software (HEC-RAS) Model of the Nestucca River. 2014.

Figures

FIGURE 1: FEMA FIRM PANEL

Attachment A

HEC-RAS Output Files

Reach	River Sta	Profile	Plan	Q Total	Min ChEl	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude \# Chl
				(cfs)	(fi)	(ft)	(fi)	(fi)	(f/ft)	(ft/s)	(sq fi)	(ft)	
Lower	22553.94	100-YR	Ex. Cond.	49700.00	-5.99	20.50	12.22	20.55	0.000090	3.06	32247.60	3644.65	0.11
Lower	22553.94	100-YR	Prop. Cond.	49700.00	-5.99	20,50	12.22	20.55	0.000090	3.06	32247.83	3644.66	0.11
Lower	21008.6	100-YR	Ex. Cond.	49700.00	-8.92	20.09		20.31	0.000259	5.18	17865.91	1743.77	0.20
Lower	21008.6	100-YR	Prop. Cond.	49700.00	-8.92	20.09		20.31	0.000259	5.18	17866.07	1743.77	0.20
Lower	20157.05	100-YR	Ex. Cond.	49700.00	-9.15	19.94	12.36	20.10	0.000212	4.43	20015.00	2302.29	0.17
Lower	20157.05	100-YR	Prop. Cond.	49700.00	-9.15	19.94	12.36	20.10	0.000212	4.43	20015.19	2302.29	0.17
Lower	19079.89	100-YR	Ex. Cond.	49700.00	-11.85	19.70		19.89	0.000228	5.02	20295.96	1888.75	0.18
Lower	19079.89	100-YR	Prop. Cond.	49700.00	-11.85	19.70		19.89	0.000228	5.02	20296.16	1888.75	0.18
Lower	18019.8	100-YR	Ex. Cond.	49700.00	-7.69	19.54	11.35	19.68	0.000186	4.31	22190.83	2668.25	0.16
Lower	18019.8	100-YR	Prop. Cond.	49700.00	-7.69	19.54	11.35	19.68	0.000186	4.31	22191.05	2668.26	0.16
Lower	17875.97	100-YR	Ex. Cond.	49700.00	-7.60	19.52	11.05	19.65	0.000168	4.13	23065.31	2677.05	0.16
Lower	17875.97	100-YR	Prop. Cond.	49700.00	-7.60	19.52	11.05	19.65	0.000168	4.13	23065.55	2677.05	0.16
Lower	17653.2	100-YR	Ex. Cond.	49700.00	-4.67	19.54	11.28	19.61	0.000095	3.21	29282.63	3181.65	0.12
Lower	17653.2	100-YR	Prop. Cond.	49700.00	-4.67	19.54	11.28	19.61	0.000095	3.21	29282.93	3181.65	0.12
Lower	15949.74	100-YR	Ex. Cond.	49700.00	-7.67	19.49	9.86	19.52	0.000032	1.90	46748.95	4377.64	0.07
Lower	15949.74	100-YR	Prop. Cond.	49700.00	-7.67	19.49	9.86	19.52	0.000032	1.90	46749.38	4377.65	0.07
Lower	14728.64	100-YR	Ex. Cond.	49700.00	-9.90	19.44	10.23	19.48	0.000043	2.46	37331.63	3855.78	0.09
Lower	14728.64	100-YR	Prop. Cond.	49700.00	-9.90	19.44	10.23	19.48	0.000043	2.46	37332.01	3855.78	0.09
Lower	14621.23			Bridge									
Lower	14544.91	100-YR	Ex. Cond.	49700.00	-8.62	19.42	10.32	19.46	0.000045	2.54	36915.93	3871.12	0.10
Lower	14544.91	100-YR	Prop. Cond.	49700.00	-8.62	19.42	10.32	19.46	0.000045	2.54	36916.31	3871.12	0.10
Lower	13541.26	100-YR	Ex. Cond.	49700.00	-7.81	19.38	10.21	19.42	0.000052	2.50	32796.95	3280.39	0.10
Lower	13541.26	100-YR	Prop. Cond.	49700.00	-7.81	19.38	10.21	19.42	0.000052	2.50	32797.25	3280.39	0.10
Lower	12396	100-YR	Ex. Cond.	49700.00	-3.59	18.51		19.22	0.000462	7.06	9099.18	2050.30	0.30
Lower	12396	100-YR	Prop. Cond.	49700.00	-3.59	18.51		19.22	0.000462	7.06	9099.27	2050.30	0.30
Lower	11367.2	100-YR	Ex. Cond.	49700.00	-3.05	17.74	9.51	18.66	0.000619	7.83	7539.82	2019.55	0.34
Lower	11367.2	100-YR	Prop. Cond.	49700.00	-3.05	17.74	9.51	18.66	0.000619	7.83	7539.93	2019.58	0.34
Lower	10048.77	100-YR	Ex. Cond.	49700.00	-3.49	16.99	9.18	17.82	0.000617	7.52	8689.80	2063.64	0.34
Lower	10048.77	100-YR	Prop. Cond.	49700.00	-3.49	16.99	9.18	17.82	0.000617	7.52	8690.02	2063.67	0.34

Reach	River Sta	Profile	Plan	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude \# Chl
				(cfs)	(ft)	(f)	(fi)	(f)	(flft)	(fl/s)	(sq fi)	(f)	
Lower	9942.323			Bridge									
Lower	9904.361	100-YR	Ex. Cond.	49700.00	-8.44	16.84	8.05	17.52	0.000540	6.93	10040.74	2094.21	0.31
Lower	9904.361	100-YR	Prop. Cond.	49700.00	-8.44	16.84	8.05	17.52	0.000540	6.93	10040.98	2094.21	0.31
Lower	8988.11	100-YR	Ex. Cond.	49700.00	-4.80	16.62	8.14	16.98	0.000328	5.35	12974.76	1987.89	0.24
Lower	8988.11	100-YR	Prop. Cond.	49700.00	-4.80	16.62	8.14	16.98	0.000328	5.35	12975.12	1987.91	0.24
Lower	8192.259	100-YR	Ex. Cond.	49700.00	-18.19	16.37	6.30	16.73	0.000306	5.46	12950.26	2042.12	0.23
Lower	8192.259	100-YR	Prop. Cond.	49700.00	-18.19	16.37	6.30	16.73	0.000306	5.46	12950.67	2042.12	0.23
Lower	8165	100-YR	Ex. Cond.	49700.00	-17.33	16.36	6.23	16.72	0.000285	5.38	13042.24	1970.46	0.23
Lower	8165	100-YR	Prop. Cond.	49700.00	-17.33	16.36	6.23	16.73	0.000290	5.42	12717.24	1924.26	0.23
Lower	8131	100-YR	Ex. Cond.	49700.00	-16.25	16.34	6.32	16.71	0.000297	5.49	12737.63	1923.02	0.23
Lower	8131	100-YR	Prop. Cond.	49700.00	-16.25	16.33	6.32	16.72	0.000303	5.54	12447.08	1876.78	0.23
Lower	8092	100-YR	Ex. Cond.	49700.00	-15.01	16.34	6.28	16.70	0.000269	5.27	12608.40	1838.87	0.23
Lower	8092	100-YR	Prop. Cond.	49700.00	-15.01	16.34	6.28	16.69	0.000261	5.19	12569.58	1839.59	0.22
Lower	8061	100-YR	Ex. Cond.	49700.00	-14.02	16.34	6.35	16.68	0.000278	5.15	12768.88	1825.31	0.22
Lower	8061	100-YR	Prop. Cond.	49700.00	-14.02	16.34	6.35	16,68	0.000278	5.15	12768.88	1825.31	0.22
Lower	8031	100-YR	Ex. Cond.	49700.00	-14.02	16.35		16.67	0.000266	5.01	13841.53	1832.03	0.22
	8031	100-YR	Prop. Cond.	49700.00	-14.02	16.35		16.67	0.000266	5.01	13841.53	1832.03	0.22
Lower Lower	7839.108	100-YR	Ex. Cond.	49700.00	-6.96	16.25	6.76	16.61	0.000310	5.16	12464.76	1879.15	0.23
	7839.108	100-YR	Prop. Cond.	49700.00	-6.96	16.25	6.76	16.61	0.000310	5.16	12464.76	1879.15	0.23
Lower	6628.945	100-YR	Ex. Cond.	49700.00	-1.36	16.04	6.84	16.27	0.000208	3.91	14212.35	3171.30	0.19
Lower	6628.945	100-YR	Prop. Cond.	49700.00	-1.36	16.04	6.84	16.27	0.000208	3.91	14212.35	3171.30	0.19
Lower	4746.314	100-YR	Ex. Cond.	49700.00	-11.72	14.76	7.45	15.56	0.000672	7.30	7417.23	2442.34	0.34
Lower	4746.314	100-YR	Prop. Cond.	49700.00	-11.72	14.76	7.45	15.56	0.000672	7.30	7417.23	2442.34	0.34
Lower Lower	3370.732	100-YR	Ex. Cond.	49700.00	-3.40	14.28	6.63	14.73	0.000430	5.53	9803.55	3594.57	0.27
	3370.732	100-YR	Prop. Cond.	49700.00	-3.40	14.28	6.63	14.73	0.000430	5.53	9803.55	3594.57	0.27
Lower Lower	2099.855	100-YR	Ex. Cond.	49700.00	-3.90	14.15	5.85	14.31	0.000175	3.42	17693.71	5262.50	0.17
	2099.855	100-YR	Prop. Cond.	49700.00	-3.90	14.15	5.85	14.31	0.000175	3.42	17693.71	5262.50	0.17

$$
R S=21008.6
$$

$R S=14621.23 B R$

$$
\text { RS }=8192.259
$$

$$
R S=4746.314
$$

Melissa Jenck

From:	Crowley, Josha Josha.Crowley@atkinsglobal.com
Sent:	Monday, April 26, 2021 8:51 AM
To:	Melissa Jenck
Subject:	RE: EXTERNAL: Fwd: David Coulter

Melissa - this looks good to me. No comments.

Josha Crowley, PE, PMP, CFM, D.WRE
RSC Lead | STARR II - Region X Service Center
Phone: (425) 329-3679
Cell: (206) 499-2440

From: Melissa Jenck mjenck@co.tillamook.or.us
Sent: Monday, April 19, 2021 3:32 PM
To: Crowley, Josha Josha.Crowley@atkinsglobal.com
Subject: FW: EXTERNAL: Fwd: David Coulter

Good afternoon Josha,

Another day, another model (-) I hope I'm not keeping you too busy! I've got another no-rise for a property in Nestucca. Can you please review for compliance?

Thank you much!

Melissa Jenck | CFM, Land Use Planner II
Phone (503) 842-3408 x3301
(she/her)

The Department is excited to announce that we are OPEN to the public by appointment. To review the list of services provided and to schedule an appointment with us, please visit https://www.co.tillamook.or.us/gov/ComDev/ to access the appointment scheduler portal.

From: ronald coulter ron.coulterarchitects@gmail.com
Sent: Monday, April 19, 2021 12:31 PM
To: Melissa Jenck mjenck@co.tillamook.or.us
Subject: EXTERNAL: Fwd: David Coulter
[NOTICE: This message originated outside of Tillamook County -- DO NOT CLICK on links or open attachments unless you are sure the content is safe.]

I'm forwarding Jake's final report.....this has both the PDF and the computer model.
Per our discussion this morning.
thanks Melissa

From: Jake Hofeld jakeh@watways.com
Date: Tue, Mar 30, 2021 at 1:27 PM
Subject: RE: David Coulter
To: ronald coulter ron.coulterarchitects@gmail.com

Hi Ron,

Attached is our report and the associated hydraulic model for you to send to the County. Please let me know if you have any questions.

Thanks,

Jake D. Hofeld PE/CWRE

Senior Engineer

Waterways Consulting, Inc.

503-528-4816
www.watways.com

From: Jake Hofeld
Sent: Monday, March 29, 2021 1:31 PM
To: ronald coulter ron.coulterarchitects@gmail.com
Subject: RE: David Coulter

Hi Ron,

The next step will be for me to finalize the hydraulic analysis model and report for you to send to the County with your permit application. I expect to have this over to you by tomorrow.

Thanks,
-Jake

From: ronald coulter ron.coulterarchitects@gmail.com
Sent: Monday, March 29, 2021 12:56 PM
To: Jake Hofeld jakeh@watways.com
Subject: David Coulter

What's the next step......do I review, then you send to the county?

Hope you had a great vacation on the coast.

Ron

[^5]
[^0]: Sarah Absher, CFM, Director
 Enc. Applicable Ordinance Criteria, Maps ,

[^1]: 105 N. Emerson Street, Suite 201 . Chelan, Washington
 Mail: P.O. Box 2323. Lake Chelan, WA 98816
 Office: 509.630 .5518

[^2]: 105 N . Emerson Street. Suite 201. Chelan. Washington
 Mail: P.O. Box 2323. Lake Chelan. WA 98816
 Office: 509.630 .5518

[^3]: Message from Tillamook PUD
 Click on the Nixle logo on our home page at www.tpud.org to sign up to receive important outage alerts from Tillamook PUD via email
 or text messages.

[^4]: 'by double pass expansion

[^5]: This email and any attached files are confidential and copyright protected. If you are not the addressee, any dissemination of this communication is strictly prohibited. Unless otherwise expressly agreed in writing, nothing stated in this communication shall be legally binding. The ultimate parent company of the Atkins Group is SNC-Lavalin Group Inc. Registered in Québec, Canada No. 059041-0. Registered Office 455 boul. René-Lévesque Ouest, Montréal, Québec, Canada, H2Z 1Z3. A list of Atkins Group companies registered in the United Kingdom and locations around the world can be found at http://www.atkinsglobal.com/site-services/group-company-registration-details

 Consider the environment. Please don't print this e-mail unless you really need to.

