Suite 142, Sherwood, OR 97140

Technical Memorandum

To: Carey Sheldon, Riverview Meadows, LLC

From: Michael Ard, PE
Date: October 13, 2022

Re: Riverview Meadows - Single Site Access Analysis Update

Following submittal of the Riverview Meadows Traffic Impact Study dated October 7, 2022, a question was raised regarding whether the proposed development would operate safely and efficiently if only the existing (northerly) access formed by River View Meadows Lane was utilized for site access. This supplemental analysis memorandum is written to provide updated analysis and recommendations for this "single-access" development scenario.

This updated analysis assumes that the "South Site Access" will remain in place, but that site trips from the proposed development will not access this existing roadway. Rather, the southerly access would serve existing users and emergency access only. As such, all site trips from the 20 homes which will completed within Phase 1 as well as the future trips associated with the 74 homes within Phases 2 and 3 were assumed to exclusively use River View Meadows Lane for access under this analysis scenario.

A diagram showing the assignment of site trips from the future homes within the proposed Phase 2 and 3 development is provided in Figure 1 of the attached technical appendix. Figures 2 and 3 show the projected turning movement volumes at the study intersections under year 2025 background conditions and year 2025 background plus site trips conditions respectively, again assuming a single point of access for the proposed development.

OPERATIONAL ANALYSIS UPDATE

The operational analysis for the updated traffic volumes was again conducted using Synchro 11 software, with outputs based on the methodologies identified in the HIGHWAY CAPACITY MANUAL, $6^{\text {th }}$ Edition, published by the Transportation Research Board.

The results of the operational analysis are summarized in Table 3 on the following page. Detailed analysis worksheets are also included in the technical appendix.

Riverview Meadows - Single Access Update
October 13, 2022
Page 2 of 3

Table 3-Operational Analysis Summary: Year 2025 Future Conditions

Intersection	AM Peak Hour			PM Peak Hour		
	Delay	LOS	v/c	Delay	LOS	v/c
Northfork Rd at South Site Access						
2025 Background Conditions	8.9	A	0.01	8.6	A	0.01
2025 Background plus Site	9.1	A	0.01	8.7	A	0.01
Northfork Rd at McDonald Dike Rd						
2025 Background Conditions	9.2	A	0.03	9.2	A	0.04
2025 Background Plus Site	9.5	A	0.04	9.5	A	0.05
Northfork Rd at Riverview Meadows Ln						
2025 Background Conditions	8.8	A	0.02	8.6	A	0.01
2025 Background plus Site	9.0	A	0.07	8.8	A	0.04

Based on the results of the updated operational analysis, again the study intersections are projected to operate acceptably with a single point of access either with or without the addition of site trips from the proposed development. This result is not surprising given that the intersections are projected to operate at well below 10 percent of capacity, indicating that there will be no vehicles waiting to make turning movements during the vast majority of the peak hours. No operational mitigations are necessary or recommended in conjunction with the single-access scenario for the proposed development.

WARRANT ANALySIS UPDATE

The traffic signal and turn-lane warrants analyses were also updated for the study intersections. Based on the updated analysis, again no traffic signal or turn lane warrants are projected to be satisfied upon completion of the proposed development. Accordingly, no new traffic signals or turn lanes are recommended. Detailed analysis worksheets are included in the attached technical appendix.

Operational Impacts of Sight Distance Update

The calculated delays associated with limited sight lines at the site access intersection remain applicable when considering analysis with a single point of access. Since the delays are a function of sight distance and roadway geometry, the maximum induced delay would remain at 1.07 seconds per vehicle when a conflict occurs.

Based on the increased volume of traffic entering Northfork Road from River View Meadows Lane as well as the traffic volumes on Northfork Road, the expected total induced delay per day would be approximately 4 seconds per day. The total induced delays remain very low because the amount of induced delay per vehicle is low (between 0.0 and 1.07 seconds) and because the odds of a conflict

Riverview Meadows - Single Access Update
October 13, 2022
Page 3 of 3
occurring with a vehicle just beyond the limits of the available sight distance are also low (approximately 1.5 percent of exiting vehicles would be expected to turn onto Northfork Road while a vehicle is approaching and may be subject to delay.

Based on the negligible calculated induced delays of 4 seconds per day, again any requirement for mitigation for the limited sight distance would be expected to result in costs exceeding the resulting benefits. Accordingly, the available intersection sight distance is adequate for the River View Meadows Lane approach to Northfork Road and no operational or safety mitigations are recommended.

Local Street Traffic Volumes

Using a single point of access, the projected traffic volumes on River View Meadows Lane would be expected to increase as compared to a two-access scenario. Based on the updated analysis, the average daily traffic volume on this roadway is projected to be 940 vehicles per day if River View Meadows Lane is the only roadway that serves daily traffic traveling to and from the proposed development. This traffic volume remains within the nominal capacity of a local residential queueing street since it is fewer than 1,000 vehicles per day.

Conclusions

Based on the updated operational analysis, the study intersections are again projected to continue to operate acceptably under year 2025 traffic conditions with the addition of all site trips from the proposed development using River View Meadows Lane for site access.

Based on the updated warrant analysis, again no new traffic signals or turn lanes are recommended in conjunction with the proposed development.

The available sight distances remain adequate to ensure safe operation of the area intersections. Delays to through traffic on Northfork Road at River View Meadows Lane would be projected to increase from 3 seconds per day to 4 seconds per day if River View Meadows Lane serves as the sole access for the proposed development. Regardless, the delays to through traffic remain negligible. Accordingly, no sight distance improvements are necessary or recommended in conjunction with the proposed development.

Based on the prior analysis of River View Meadows Lane's road width and geometry, large vehicles may have difficulty navigating the roadway and require both travel lanes to negotiate the curves in the vicinity of Northfork Road. Very large trucks may also trailer off the roadway surface. However, the road width is sufficient to approximately 1,000 passenger vehicles per day despite the narrow width, similar to the capacity of a residential queuing street. The projected future traffic volumes on this roadway remain within this effective roadway capacity.

Appendix

HCM 6th TWSC
1: Northfork Road \& South Site Access

| Intersection | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | :--- |
| Int Delay, s/veh | 0.5 | | | | | |
| Movement | EBL | EBR | NBL | NBT | SBT | SBR |
| Lane Configurations | Tr | | | A | b | |
| Traffic Vol, veh/h | 0 | 5 | 1 | 38 | 57 | 0 |
| Future Vol, veh/h | 0 | 5 | 1 | 38 | 57 | 0 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Stop | Stop | Free | Free | Free | Free |
| RT Channelized | - | None | - | None | - | None |
| Storage Length | 0 | - | - | - | - | - |
| Veh in Median Storage, \# | 0 | - | - | 0 | 0 | - |
| Grade, \% | 0 | - | - | 0 | 0 | - |
| Peak Hour Factor | 87 | 87 | 87 | 87 | 87 | 87 |
| Heavy Vehicles, \% | 33 | 33 | 13 | 13 | 9 | 9 |
| Mvmt Flow | 0 | 6 | 1 | 44 | 66 | 0 |

Approach	EB	NB	SB
HCM Control Delay, S	8.9	0.2	0
HCM LOS	A		

Minor Lane/Major Mumt	NBL	NBT EBLn1	SBT	SBR
Capacity (veh/h)	1469	-918	-	-
HCM Lane V/C Ratio	0.001	-0.006	-	-
HCM Control Delay (s)	7.5	0	8.9	-
HCM Lane LOS	A	A	A	-
HCM 95th \%tile Q(veh)	0	-	0	-

HCM 6th TWSC
2: Northfork Road \& McDonald Dike Road

Intersection						
Int Delay, s/veh	2.7					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	\%		个			4
Traffic Vol, veh/h	22	3	30	10	6	32
Future Vol, veh/h	22	3	30	10	6	32
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	\#	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	87	87	87	87	87	87
Heavy Vehicles, \%	14	14	8	8	7	7
Mumt Flow	25	3	34	11	7	37

Approach	WB	NB	SB
HCM Control Delay,s	9.2	0	1.2
HCM LOS	A		

Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT	
Capacity (veh/h)	-	-890	1531	-	
HCM Lane V/C Ratio	-	-0.032	0.005	-	
HCM Control Delay (s)	-	-	9.2	7.4	0
HCM Lane LOS	-	-	A	A	A
HCM 95th \%tile Q(veh)	-	-	0.1	0	-

HCM 6th TWSC
3: Northfork Road \& River View Meadows Lane

Intersection						
Int Delay, s/veh	2.3					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y'			A	b	
Traffic Vol, veh/h	1	12	9	28	29	0
Future Vol, veh/h	1	12	9	28	29	0
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	82	82	82	82	82	82
Heavy Vehicles, \%	25	25	13	13	7	7
Mvmt Flow	1	15	11	34	35	0

Major/Minor	Minor2	Major1						Major2	
Conflicting Flow All	91	35	35	0	-	0			
\quad Stage 1	35	-	-	-	-	-			
\quad Stage 2	56	-	-	-	-	-			
Critical Hdwy	6.65	6.45	4.23	-	-	-			
Critical Hdwy Stg 1	5.65	-	-	-	-	-			
Critical Hdwy Stg 2	5.65	-	-	-	-	-			
Follow-up Hdwy	3.725	3.525	2.317	-	-	-			
Pot Cap-1 Maneuver	856	976	1508	-	-	-			
\quad Stage 1	931	-	-	-	-	-			
\quad Stage 2	911	-	-	-	-	-			
Platoon blocked, \%				-	-	-			
Mov Cap-1 Maneuver	850	976	1508	-	-	-			
Mov Cap-2 Maneuver	850	-	-	-	-	-			
Stage 1	924	-	-	-	-	-			
Stage 2	911	-	-	-	-	-			

Approach	EB	NB	SB
HCM Control Delay, s	8.8	1.8	0

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	1508	-965	-	-	
HCM Lane V/C Ratio	0.007	-0.016	-	-	
HCM Control Delay (s)	7.4	0	8.8	-	-
HCM Lane LOS	A	A	A	-	-
HCM 95th \%tile Q(veh)	0	-	0.1	-	-

[^0]HCM 6th TWSC
1: Northfork Road \& South Site Access

Intersection						
Int Delay, s/veh	0.4					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Mr			A	b	
Traffic Vol, veh/h	0	4	2	82	52	0
Future Vol, veh/h	0	4	2	82	52	0
Conflicting Peds, \#hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	89	89	89	89	89	89
Heavy Vehicles, \%	2	2	4	4	3	3
Mvmt Flow	0	4	2	92	58	0

HCM 6th TWSC
2: Northfork Road \& McDonald Dike Road

| | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | :--- |
| Intersection | | | | | | |
| Int Delay, s/veh | 2.4 | | | | | |
| Movement | WBL | WBR | NBT | NBR | SBL | SBT |
| Lane Configurations | Tr | | $\hat{1}$ | | | A |
| Traffic Vol, veh/h | 22 | 8 | 57 | 17 | 11 | 31 |
| Future Vol, veh/h | 22 | 8 | 57 | 17 | 11 | 31 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Stop | Stop | Free | Free | Free | Free |
| RT Channelized | - | None | - | None | - | None |
| Storage Length | 0 | - | - | - | - | - |
| Veh in Median Storage, \# | 0 | - | 0 | - | - | 0 |
| Grade, \% | 0 | - | 0 | - | - | 0 |
| Peak Hour Factor | 92 | 92 | 92 | 92 | 92 | 92 |
| Heavy Vehicles, \% | 4 | 4 | 3 | 3 | 6 | 6 |
| Mvmt Flow | 24 | 9 | 62 | 18 | 12 | 34 |

HCM 6th TWSC
3: Northfork Road \& River View Meadows Lane

Intersection							
Int Delay, s/veh	1.6						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	Yr			T	p		
Traffic Vol, veh/h	1	8	14	51	37	1	
Future Vol, veh/h	1	8	14	51	37	1	
Conflicting Peds, \#/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	-	-	-	-	-	
Veh in Median Storage, \#	0	-	-	0	0	-	
Grade, \%	0	-	-	0	0	-	
Peak Hour Factor	81	81	81	81	81	81	
Heavy Vehicles, \%	2	2	3	3	7	7	
Mvmt Flow	1	10	17	63	46	1	

Approach	EB	NB	SB
HCM Control Delay, S	8.6	1.6	0
HCM LOS	A		

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR
Capacity (veh/h)	1554	-998	-	-
HCM Lane V/C Ratio	0.011	-0.011	-	-
HCM Control Delay (s)	7.3	0	8.6	-

Approach	EB	NB	SB
HCM Control Delay, S	9.1	0.2	0
HCM LOS	A		

Minor Lane/Major Mumt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	1426	-877	-	-	
HCM Lane V/C Ratio	0.001	-0.007	-	-	
HCM Control Delay (s)	7.5	0	9.1	-	-
HCM Lane LOS	A	A	A	-	-
HCM 95th \%otil Q(veh)	0	-	0	-	-

HCM 6th TWSC
2: Northfork Road \& McDonald Dike Road

Intersection						
Int Delay, s/veh	2.3					
Movement W	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		个			4
Traffic Vol, veh/h	22	5	41	10	12	62
Future Vol, veh/h	22	5	41	10	12	62
Conflicting Peds, \#hr	0	0	0	0	0	0
Sign Control S	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-.	- -	-	-
Veh in Median Storage, \#	\# 0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	87	87	87	87	87	87
Heavy Vehicles, \%	14	14	8	8	7	7
Mumt Flow	25	6	47	11	14	71

Intersection						
Int Delay, s/veh	4.8					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Yr			\&	b	
Traffic Vol, veh/h	3	48	22	28	29	1
Future Vol, veh/h	3	48	22	28	29	1
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	82	82	82	82	82	82
Heavy Vehicles, \%	25	25	13	13	7	7
Mvmt Flow	4	59	27	34	35	1

Approach	EB	NB	SB
HCM Control Delay, S	9	3.3	0
HCM LOS	A		

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT SBR		
Capacity (veh/h)	1507	-	962	-	-
HCM Lane V/C Ratio	0.018	-0.065	-	-	
HCM Control Delay (s)	7.4	0	9	-	-
HCM Lane LOS	A	A	A	-	-
HCM 95th \%tile Q(veh)	0.1	-	0.2	-	-

HCM 6th TWSC
1: Northfork Road \& South Site Access

Intersection						
Int Delay, s/veh	0.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Tr			A	b	
Traffic Vol, veh/h	0	4	2	117	72	0
Future Vol, veh/h	0	4	2	117	72	0
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	89	89	89	89	89	89
Heavy Vehicles, \%	2	2	4	4	3	3
Mvmt Flow	0	4	2	131	81	0

Approach	EB	NB	SB
HCM Control Delay, s	8.7	0.1	0
HCM LOS	A		

Minor Lane/Major Mvmt	NBL	NBTEBLn1	SBT	SBR	
Capacity (veh/h)	1504	-	979	-	-
HCM Lane V/C Ratio	0.001	-0.005	-	-	
HCM Control Delay (s)	7.4	0	8.7	-	-
HCM Lane LOS	A	A	A	-	-
HCM 95th \%tile Q(veh)	0	-	0	-	-

[^1]HCM 6th TWSC
2: Northfork Road \& McDonald Dike Road

Intersection							
Int Delay, s/veh	2.2						
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	Yr		\hat{p}			4	
Traffic Vol, veh/h	22	14	92	17	15	51	
Future Vol, veh/h	22	14	92	17	15	51	
Conflicting Peds, \#/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	-	-	-	-	-	
Veh in Median Storage, \#	0	-	0	-	-	0	
Grade, \%	0	-	0	-	-	0	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, \%	4	4	3	3	6	6	
Mvmt Flow	24	15	100	18	16	55	

HCM 6th TWSC
3: Northfork Road \& River View Meadows Lane

Approach	EB	NB	SB
HCM Control Delay, S	8.8	3.9	0
HCM LOS	A		

	Minor Lane/Major Mumt	NBL	NBT EBLn1	SBT
SBR				
Capacity (veh/h)	1549	-983	-	-
HCM Lane V/C Ratio	0.044	-0.044	-	-
HCM Control Delay (s)	7.4	0	8.8	-
HCM Lane LOS	A	A	A	-
HCM 95th \%tile Q(veh)	0.1	-	0.1	-

Scenario 2 Riverview Meadows 2:55 pm 08/11/2022 2025 Bkgd plus Site Trips PM Peak Hour MTA

Preliminary Traffic Signal Warrant Analysis

Project Name: Riverview Meadows
Intersection: Northfork Road at South Site Access
Scenario: 2025 Background Plus Site Trips
Number of Major Street Lanes: 1
Number of Minor Street Lanes 1
PM Peak Hour Volume \qquad (sum of both approaches) PM Peak Hour Volume \qquad (highest-volume approach) ${ }^{\text {a }}$
Posted or 85th percentile speed $>40 \mathrm{mph}$: \qquad
Isolated Population Less than 10,000:
Warrant 1, Eight-Hour Vehicular Volume
Condition A - Minimum Vehicular Volume

Number of lanes for moving traffic on each approach	Vehicles per hour on major street (total of both approaches)			Vehicles per hour on minor street (total of both approaches)					
Major Street	Minor Street	100%	80%	70%	56%	100%	80%	70%	56%
1	1	500	400	350	280	150	120	105	84
2 or more	1	600	480	420	336	150	120	105	84
2 or more	2 or more	600	480	420	336	200	160	140	112
1	2 or more	500	400	350	280	200	160	140	112

Condition B - Interruption of Continuous Traffic

Number of lanes for moving traffic on each approach	Vehicles per hour on major street (total of both approaches)			Vehicles per hour on minor street (total of both approaches)					
Major Street	Minor Street	100%	80%	70%	56%	100%	80%	70%	56%
1	1	750	600	525	420	75	60	53	42
2 or more	1	900	720	630	504	75	60	53	42
2 or more	2 or more	900	720	630	504	100	80	70	56
1	2 or more	750	600	525	420	100	80	70	56

Warrant Anaylsis Calculations

Condition A - Minimum Vehicular Volume

Major Street Volume	108	350	
Minor Street Volume	2	105	No
Condition B - Interruption of Continuous Traffic			
Major Street Volume	108	525	No
Minor Street Volume	2	53	
Combination Warrant $^{\text {c }}$			
Major Street Volume $_{\text {Minor Street Volume }}$	108	420	No

Minor Street Volume
2
105
No
Condition B - Interruption of Continuous Traffic
Major Street Volume
Minor Street Volume
Combination Warrant ${ }^{c}$
Major Street Volume
Minor Street Volume
8th Highest Hour ${ }^{\text {b }}$ Minimum Volume Warrant Satisfied?

[^2]
Preliminary Traffic Signal Warrant Analysis

Project Name: Riverview Meadows
Intersection: Northfork Road at McDonald Dike Road
Scenario: 2025 Background Plus Site Trips

| Number of Major Street Lanes: $\frac{1}{}$ | |
| :--- | :--- | :--- |
| Number of Minor Street Lanes $\frac{1}{2}$ | |
| Posted or 85th percentile speed $>40 \mathrm{mph}$ | Yes |
| Isolated Population Less than $10,000:$ Yes | |

PM Peak Hour Volume	175
PM Peak Hour Volume	33

$\begin{array}{ll}\text { Number of Major Street Lanes: } \frac{1}{} & \\ \text { Number of Minor Street Lanes } \frac{1}{3} & \\ \text { Posted or 85th percentile speed }>40 \mathrm{mph} & \text { Yes } \\ \begin{array}{ll}\text { Isolated Population Less than } 10,000: & \text { Yes }\end{array}\end{array}$

Warrant 1, Eight-Hour Vehicular Volume

Condition A - Minimum Vehicular Volume

Number of lanes for moving traffic on each approach	Vehicles per hour on major street (total of both approaches)			Vehicles per hour on minor street (total of both approaches)					
Major Street	Minor Street	100%	80%	70%	56%	100%	80%	70%	56%
1	1	500	400	350	280	150	120	105	84
2 or more	1	600	480	420	336	150	120	105	84
2 or more	2 or more	600	480	420	336	200	160	140	112
1	2 or more	500	400	350	280	200	160	140	112

Condition B - Interruption of Continuous Traffic

Number of lanes for moving traffic on each approach	Vehicles per hour on major street (total of both approaches)			Vehicles per hour on minor street (total of both approaches)					
Major Street	Minor Street	100%	80%	70%	56%	100%	80%	70%	56%
1	1	750	600	525	420	75	60	53	42
2 or more	1	900	720	630	504	75	60	53	42
2 or more	2 or more	900	720	630	504	100	80	70	56
1	2 or more	750	600	525	420	100	80	70	56

Warrant Anaylsis Calculations

Condition A - Minimum Vehicular Volume
Major Street Volume 99
Minor Street Volume
Condition B - Interruption of Continuous Traffic
Major Street Volume
Minor Street Volume

8th Highest Hour ${ }^{\text {b }}$
Minimum Volume

Warrant Satisfied?

99	350	No
19	105	
99	525	No
19	53	
99	420	No

[^3]
Preliminary Traffic Signal Warrant Analysis

Project Name: Riverview Meadows
Intersection: Northfork Road at River View Meadows Lane
Scenario: 2025 Background Plus Site Trips

| Number of Major Street Lanes: $\frac{1}{}$ | |
| :--- | :--- | :--- |
| Number of Minor Street Lanes $\frac{1}{2}$ | |
| Posted or 85th percentile speed $>40 \mathrm{mph}$ | Yes |
| Isolated Population Less than $10,000:$ Yes | |

Warrant 1, Eight-Hour Vehicular Volume

Condition A - Minimum Vehicular Volume

Number of lanes for moving traffic on each approach	Vehicles per hour on major street (total of both approaches)			Vehicles per hour on minor street (total of both approaches)					
Major Street	Minor Street	100%	80%	70%	56%	100%	80%	70%	56%
1	1	500	400	350	280	150	120	105	84
2 or more	1	600	480	420	336	150	120	105	84
2 or more	2 or more	600	480	420	336	200	160	140	112
1	2 or more	500	400	350	280	200	160	140	112

Condition B - Interruption of Continuous Traffic

Number of lanes for moving traffic on each approach	Vehicles per hour on major street (total of both approaches)			Vehicles per hour on minor street (total of both approaches)					
Major Street	Minor Street	100%	80%	70%	56%	100%	80%	70%	56%
1	1	750	600	525	420	75	60	53	42
2 or more	1	900	720	630	504	75	60	53	42
2 or more	2 or more	900	720	630	504	100	80	70	56
1	2 or more	750	600	525	420	100	80	70	56

Warrant Anaylsis Calculations

Condition A - Minimum Vehicular Volume
Major Street Volume 83

83
15

83
15

83
15
Combination Warrant ${ }^{\text {c }}$
Major Street Volume
Minor Street Volume
Condition B - Interruption of Continuous Traffic
Major Street Volume

Minor Street Volume

350
105
No

525
53
No

8th Highest Hour ${ }^{\text {b }}$ Minimum Volume Warrant Satisfied?420
84 No

[^4]
Left-Turn Lane Warrant Analysis (ODOT Methodology)

Project Name: Riverview Meadows
Approach: Northbound Northfork Road at South Site Access
Scenario: 2025 Background Plus Site Trips

Number of Advancing Lanes: 1
Number of Opposing Lanes: 1
Major-Street Design Speed: 45 mph

	AM Volume	PM Volume
Advancing Volume for Design Hour:	50	119
Opposing Volume for Design Hour:	87	72
Design Hour Volume Per Lane:	137	191
Number of Left Turns per Hour:	1	2
Left-turn lane warrants satisfied?	NO	NO

Exhibit 7-1 Left Turn Lane Criterion (TTI)

*(Advancing Volume/Number of Advancing Through Lanes) + (Opposing Volume/Number of Opposing Through Lanes)

Left-Turn Lane Warrant Analysis (ODOT Methodology)

Project Name: Riverview Meadows
Approach: Sourthbound Northfork Road at McDonald Dike Road
Scenario: 2025 Background Plus Site Trips

| Number of Advancing Lanes: | 1 | |
| :--- | :---: | :---: | :--- |
| Number of Opposing Lanes: | 1 | |
| Major-Street Design Speed: | 45 | mph |

	AM Volume	PM Volume
Advancing Volume for Design Hour:	74	66
Opposing Volume for Design Hour:	51	109
Design Hour Volume Per Lane:	125	175
Number of Left Turns per Hour:	12	15
Left-turn lane warrants satisfied?	NO	NO

Exhibit 7-1 Left Turn Lane Criterion (TTI)

*(Advancing Volume/Number of Advancing Through Lanes) + (Opposing Volume/Number of Opposing Through Lanes)

Left-Turn Lane Warrant Analysis (ODOT Methodology)

Project Name: Riverview Meadows
Approach: Northbound Northfork Road at River View Meadows Lane
Scenario: 2025 Background Plus Site Trips

Number of Advancing Lanes: 1
Number of Opposing Lanes: 1
Major-Street Design Speed: 45 mph

	AM Volume	PM Volume
Advancing Volume for Design Hour:	50	106
Opposing Volume for Design Hour:	30	41
Design Hour Volume Per Lane:	80	147
Number of Left Turns per Hour:	22	55
Left-turn lane warrants satisfied?	NO	NO

Exhibit 7-1 Left Turn Lane Criterion (TTI)

*(Advancing Volume/Number of Adyancing Through Lanes) + (Opposing VolumeNumber of Opposing Through Lanes)

Right-Turn Lane Warrant Analysis (ODOT Methodology)

Project Name: Riverview Meadows
Approach: Southbound Northfork Road at South Site Access
Scenario: 2025 Background plus Site Trips

Major-Street Design Speed: 45 mph

	AM Volume	PM Volume
Number of Right Turns per Hour:	0	0
Approaching DVH in Outside Lane:	87	72
Calculated Turn Volume Threshold:	101	103
Right Turn Volume Exceeds Threshold?	NO	NO

Criterion 1: Vehicular Volume

The vehicular volume criterion is intended for application where the volume of intersecting traffic is the principal reason for considering installation of a right turn lane. The vehicular volume criteria are determined using the curve in Exhibit 7-2.

Exhibit 7-2 Right Turn Lane Criterion

Note: If there is no right turn lane, a shoulder needs to be provided. If this intersection is in a rural area and is a connection to a public street, a right turn lane is needed.

Right-Turn Lane Warrant Analysis (ODOT Methodology)

Project Name: Riverview Meadows
Approach: Northbound Northfork Road at McDonald Dike Road
Scenario: 2025 Background plus Site Trips

Major-Street Design Speed: 45 mph

Number of Right Turns per Hour:
Approaching DVH in Outside Lane:
AM Volume PM Volume
17
109
Calculated Turn Volume Threshold:
Right Turn Volume Exceeds Threshold?

10
51
106
NO

99
NO

Criterion 1: Vehicular Volume

The vehicular volume criterion is intended for application where the volume of intersecting traffic is the principal reason for considering installation of a right turn lane. The vehicular volume criteria are determined using the curve in Exhibit 7-2.

Exhibit 7-2 Right Turn Lane Criterion

Note: If there is no right turn lane, a shoulder needs to be provided. If this intersection is in a rural area and is a connection to a public street, a right turn lane is needed.

Right-Turn Lane Warrant Analysis (ODOT Methodology)

Project Name: Riverview Meadows
Approach: Southbound Northfork Road at River View Meadows Lane
Scenario: 2025 Background plus Site Trips

Major-Street Design Speed: 45 mph

	AM Volume	PM Volume
Number of Right Turns per Hour:	1	4
Approaching DVH in Outside Lane:	30	41
Calculated Turn Volume Threshold:	109	108
Right Turn Volume Exceeds Threshold?	NO	NO

Criterion 1: Vehicular Volume

The vehicular volume criterion is intended for application where the volume of intersecting traffic is the principal reason for considering installation of a right turn lane. The vehicular volume criteria are determined using the curve in Exhibit 7-2.

Exhibit 7-2 Right Turn Lane Criterion

Note: If there is no right turn lane, a shoulder needs to be provided. If this intersection is in a rural area and is a connection to a public street, a right turn lane is needed.

Basic Approach Permit
Approval Standards

Points of Interest

What is sight distance?
Types of sight distance.
Stopping sight distance.
Intersection sight distance.

Deviations from sight distance standards.
\checkmark A fast moving vehicle needs more distance to stop safely than a slow moving vehicle.
\checkmark Stopping sight distance increases as speed increases and on down grades.
\checkmark It decreases as speed decreases and on upgrades.

Sight Distance

Sight Distance is one of three approach permit approval standards.

What is Sight Distance?

Sight distance is the length of highway a driver needs to be able to see clearly. It is important for drivers on a highway to see far enough down the highway to recognize an object in the path and react appropriately to avoid a crash. It is equally important for drivers entering the highway to have a clear line of sight in both directions to see oncoming traffic and to be visible to other drivers on the highway.

Two Types of Sight Distance

I. Stopping Sight Distance measures the distance between a vehicle on the highway and an object in the travel path.
2. Intersection Sight Distance measures the length of the line of sight between a vehicle entering the highway from a driveway or crossroad and vehicles on the highway approaching from the right and left.

Stopping Sight Distance (SSD)

Stopping sight distance is the minimum length of unobstructed roadway a driver needs to see in order to identify an object in the roadway, brake and quickly stop or take other appropriate action to avoid crashing. It is also described as minimum braking distance.

Stopping sight distance (SSD) is measured from the height of a driver's eye (3.5 feet) to an object 2 feet high or more in the roadway.

Intersection Sight Distance (ISD)

Intersection sight distance is the minimum length of unobstructed line of sight between a driver entering a highway and vehicles approaching from the right and left on the highway. It is as important for drivers entering the highway to see traffic coming from both directions and to be visible to the on-coming traffic.

A driver entering a highway needs to see far enough down the highway in both directions to judge travel speed and find an acceptable gap in the traffic before turning right or turning left across travel lanes and merging into the traffic. Intersection sight distance is intended to allow a driver to enter the highway safely while allowing traffic on the highway to maintain normal travel speed.

Intersection sight distance (ISD) measures a line of sight from the height of driver's eye (3.5 feet), seated 15 feet back from the fog line or edge of the traveled way, to the right and to the left, to an object in the highway that is 3.5 feet high.

Deviations from Intersection Sight Distance

The sight distance standards ODOT uses to evaluate approach applications are based on intersection sight distance. If it is not possible to meet intersection sight distance standards, then ODOT may be able to adjust:

- The assumed speed of the oncoming traffic; or
- The point in the driveway where intersection sight distance is measured.

In most situations, intersection sight distance is greater than stopping sight distance. ODOT may be able to consider approving a sight distance deviation by using stopping sight distance in place of intersection sight distance. ODOT may require the applicant to provide mitigation in order to approve a deviation from intersection sight distance standards.

Fwd: Placement of Water Tower for Riverview Meadows

1 message
PriniLee K. McCord prinilee@trevallygroup.us
Wed, Oct 19, 2022 at 3:06 PM
To: Coast Printing coastprintingoffice@gmail.com
Please make 10 copies of this email.
Thank you!

---------- Forwarded message

From: Melissa Thompson-Kiefer mthompson@nehalem.gov
Date: Fri, Oct 7, 2022 at 2:14 PM
Subject: RE: Placement of Water Tower for Riverview Meadows
To: Sarah Absher sabsher@co.tillamook.or.us
CC: Prini Lee McCord prinilee@trevallygroup.us

Hello Sarah,

I have conferred with our City Planner and can confirm that the city would allow the construction of the water tower and installation of the water line in the areas depicted in part of future Phase 3 of Riverview Meadows at the time of construction of the Phase 2 subdivision.

Thanks,

Meiissa Thompson-Kiefer

City Manager

City of Nehalem
503-368-5627

From: Sarah Absher sabsher@co.tillamook.or.us
Sent: Friday, October 7, 2022 11:53 AM
To: Melissa Thompson-Kiefer mthompson@nehalem.gov
Cc: Prini Lee McCord prinilee@trevallygroup.us
Subject: Placement of Water Tower for Riverview Meadows

Good Morning Melissa,

Thank you for taking my call. As discussed, the applicants of Riverview Meadows Phase 2 would like to confirm it would be allowed to continue with construction of the water tower and waterline to serve Phase 2 as it is reflected on the submitted plats. The water tower and line installation would be installed upon approval of Phase 2 for future use of Phase 2 and 3 . The line would be installed in the location of the future right of way for road improvements in Phase 3.

The City's zoning code is silent on placement of water towers. Please confirm if the city would allow the construction of the water tower and installation of the water line in the areas depicted part of future Phase 3 of Riverview Meadows at the time of construction of the Phase 2 subdivision.

Thank You,

Sarah Absher, CBO, CFM, Director
TILLAMOOK COUNTY | Community Development
1510-B Third Street
Tillamook, OR 97141
Phone (503) 842-3408 x3317
sabsher@co.tillamook.or.us

--
Regards,
PriniLee K. McCord I Partner
Trevally Group, LLC.
Trevally International S. DE R.L. DE C.V.
PO Box 872495, Vancouver, WA 98687
971.808.7611 I PriniLee@TrevallyGroup.us

This message may contain confidential or proprietary information intended only for the use of the addressee(s) named above or may contain information that is legally privileged. If you are not the intended addressee, you are hereby notified that reading, disseminating, distributing or copying this message is strictly prohibited.

I hereby certify that the within instrument was received for record and recorded in the County of Tillamook, State of Oregon.
Tass O'Neil, Tillamook County Clerk

Easement

Know by all persons present, that Vern Scovell ("Granter"), for consideration of the mutual promises exchanged herein and other good and valuable consideration exchanged with Riverview Meadows Development LLC, ("Grantee"), does hereby grant a non-exclusive easement for public access over, under and across the real property described herein, for the benefit of the real property as described herein, all being more particularly described herein.

EASEMENT RECITALS

A. Granter is the owner of the real property ("Parcel 1 ") being legally described, and pictorially described, in the attached Exhibit A.
B. Grantee is the owner of the real property ("Parcel 2") being legally described as follows:

> Tract B, RIVERVIEW MEADOWS PHASE I, situated in the Northwest quarter of Section 23, Township 3 North, Range 10 West, Willamette Meridian, County of Tillamook, State of Oregon, recorded July 26,2010 as Instrument N. 2010-004288, Tillamook County Records.
C. Parcel 1 and Parcel 2 are in close proximity to each other and are, or will be, connected by way of an additional public easement.
D. It is the intent of the parties herein named to create a non-exclusive, public access, and permanent right to enter, re-enter, and use Parcel 1, subject to conditions as set forth herein, for the benefit of Grantee's Parcel 2, and the general public.
E. The non-exclusive easement will be used for public and private ingress and egress purposes by the general public, by Grantee, and by Grantee's successors in ownership of Grantee's Parcel 2.

1 of 4 - Easement

F. Additionally, the non-exclusive easement for public access and public and/or private utilities, shall also include the right to lay, construct, and maintain streets, water mains, sewer mains, storm drainage lines, and all related appurtenances, to be constructed and located on, across, under or over Parcel 1.
G. The parties agree that any unknown defect in the above Easement Area due to inaccuracy will not hinder the intent of the parties.

IT IS FURTHER UNDERSTOOD and AGREED:

1. The foregoing Easement Recitals paragraphs are contractual and not merely recitals, and are incorporated by this reference.
2. The rights and obligations of all the easements herein shall run with and be appurtenant to those parcels of land as described, and shall not be personal to any person, except that the obligation to pay for the costs and expenses (for costs and expenses incurred while a person was an owner) shall be personal to the owners of the described parcels, as well as run with the described parcels.
3. Grantee, and the general public shall have a non-exclusive, public access, and permanent right to enter, re-enter, and use Parcel 1 being legally described, and pictorially described, in the attached Exhibit A, subject to conditions as set forth herein, for the benefit of Grantee's Parcel 2. The easement shall include the right of the Grantor or Grantee to reasonably improve the surface of the easement area herein described; costs of any improvements to the easement area shall be borne by Grantee, their successors and assigns. Any improvement to the easement area shall be in compliance with all applicable local, state, and federal law.
4. Grantee shall have a non-exclusive easement for public access and public and/or private utilities, to include the right to lay, construct, and maintain streets, water mains, sewer mains, storm drainage lines, and all related appurtenances, to be constructed and located on, across, under or over Parcel 1.
5. Grantor agrees that the consideration recited herein is just compensation for the property rights herein granted.
6. Grantor represents and warrants that Grantor has the authority to grant the easement and that the easement area is free from all liens and encumbrances that would materially affect the easement grant, and that they will defend this easement grant against all lawful claims and demands of all persons whomsoever with respect to any liens or encumbrances that would materially affect the easement grant.
[SIGNATURE PAGE FOLLOWS]

The parties above named have hereunto set their hands this 19 day of October, 2022.

GRANTOR:

GRANTEE:
Riverview Meadows Development LLC

Carey Sheldon, President of
Sheldon Development Inc., Member

STATE OF OREGON

County of liltamook
This instrument was acknowledged before me on October 19 th , 2022, by Vern Scovell, the above-named Granter, and Member of Grantee.

Notary Public for Oregon
My Commission expires: March 7,2025 Wachington
STATE OF-QREGON
County of Wen k
\qquad
This instrument was acknowledged before me on October 18 2022, by Carey Sheldon, President of Sheldon Development Inc., Member of the above-named Grantee.

EASEMENT SITUATED IN THE NORTHWEST ONE-QUARTER OF SECTION 23 , TOWNSHIP 3 NORTH, RANGE 10 WEST, OF THE WHLLAMETIE MERIDIAN, CITY OF NEHALEM, THLAMOOK GOUNTY, OREGON;

BEGINNING AT THE MOST EASTERLY SOUTHEAST CORNER OF PARCEL 2, PARTITION PLAT NO. 1994-58, THLLAMOOK COUNTY PLAT RECORDS; THENCE NORTH $61^{\circ} 24^{\prime} 25^{\prime \prime}$ WEST ALONG THE EAST LINE OF SAID PARTITION PLAT NO. $1994-58$, A DISTANCE OF 165.96 FEET; THENCE NORTH $45^{\circ} 07^{\prime} 05^{\prime \prime}$ WEST CONTINUING ALONG SAD EAST LINE, A DISTANCE OF 228.41 FEET; THENCE NORTH $15^{\circ} 49^{\prime} 59^{\prime \prime}$ WEST CONTINUING ALONG SAID EAST LINE, A DISTANCE OF 275.39 FEET; THENCE MORTH $16^{\circ} 45^{\prime} 30^{\prime \prime}$ WEST CONTINUING ALONG SAID EAST LINE, A DISTANCE OF 338.59 FEET; THENCE NORTH $11^{\circ} 37^{\prime} 10^{\prime \prime}$ WEST CONTINUING ALONG A PORTION OF SAID EAST LINE, A DISTANCE OF 89.07 FEET TO THE WEST LINE OF THAT PROPERTY DESGRIBED IN DOCUMENT NO. 2005-011393, TILLAMOOK COUNTY DEED RECORDS; THENCE SOUTH $36^{\circ} 55^{\prime} 01^{\circ}$ EAST ALONG THE WEST LINE OF SAID DOCUMENT NO. 2005-011393, A DISTANCE OF 121.94 FEET; THENCE SOUTH $16^{\circ} 45^{\prime} 30^{\prime \prime}$ EAST ALONG SADD WEST LINE OF DOCUMENT NO. 2005-011393, A DISTANCE OF 313.23 FEET; THENCE SOUTH $15^{\circ} 49^{\circ} 59^{\prime \prime}$ EAST ALONG SAID WEST LINE OF DOCUMENT NO. 2005-011393, A DISTANCE OF 262.73 FEET TO THE MOST WESTERLY CORNER OF THAT PROPERTY DESCRIBED IN BOOK 614, PAGE 807, TILLAMOOK COUNTY DEED RECORDS; THENCE SOUTH $45^{\circ} 07^{\circ} 05^{\prime \prime}$ EAST ALONG THE SOUTHWESTERLY LINE OF SAID PROPERTY DESCRIBED IN BOOK 614, PAGE 807, A DISTANCE OF 208.19 FEET; THENCE SOUTH $61^{\circ} 24^{\prime} 25^{\prime \prime}$ EAST CONTINUING ALONG SAID SOUTHWESTERLY LINE OF PROPERTY DESCRIBED IN BOOK 614, PAGE 807 , A DISTANGE OF 183.79 FEET TO THE MOST SOUTHMESTERLY CORNER OF THAT PROPERTY DESCRIBED IN BOOK 211, PAGE 52, TILLAMOOK COUNTY DEED RECORDS; THENCE SOUTH $60^{\circ} 03^{\prime} 55^{\circ}$ EAST ALONG THE SOUTHWESTERLY LINE OF SAID PROPERTY DESCRIBED IN BOOK 211, PAGE 52, A DISTANCE OF 120.81 FEET TO THE MOST WESTERLY CORNER OF PARTITION PLAT NO. 1993-46, THLLAMOOK COUNTY PLAT RECORDS; THENCE SOUTH $59^{\circ} 58^{\circ} 05^{\prime \prime}$ EAST ALONG THE SOUTHERLY LINE OF SAID PARTITION PLAT NO. 1993-46, A DISTANCE OF 130.92 FEET TO THE WEST RIGHT-OF-WAY LINE FOR NORTH FORK COUNTY ROAD; THENCE ALONG 250.37 FOOT RADIUS NON-TANGENT GURVE TO THE LEFT, THROUGH A CENTRAL ANGLE OF $14^{\circ} 32^{\prime} 27^{\prime \prime}$, A LENGTH OF 63.54 FEET, THE LONG GHORD OF WHIGH BEARS SOUTH $67^{\circ} 12^{\prime} 31^{\prime \prime}$ WEST 63.37 FEET; THENCE NORTH $60^{\circ} 03^{\prime} 55^{\circ}$ WEST, A DISTANCE OF 237.03 FEET TO THE POINT OF BEGINNING

EXHIBIT A Page 2 of 2

Tillamook County Public Works
503 Marolf Loop Road, Tillamook, OR 97141
County Road Phone: 503-842-3419
Solid Waste Phone: 503-815-3975
Fax: 503-842-6473
Email: pubwks@co.tillamook.or.us TTY Oregon Relay Service

Trees, Cheese, and Ocean Breeze

October 13, 2022

To: Sarah Absher, Planning Department Director
Tillamook County Planning Department
From: Ronald E. Newton, Engineering Technician III
Tillamook County Public Works
Subject: Partition Request \#851-21-000415-PLNG
Sheldon Development, Inc.

Sarah,
Recently received correspondence from counsel advising Riverview Meadows Inc. indicates some question of authority to require a fully functional secondary access road to support future development of the planned unit development known as River View Meadows.

As you now, the proposed development is located outside the city limits of The City of Nehalem, but within the associated Urban Growth Boundary, (UGB). This presents the situation where city ordinance language is based on development within the grid system of the city street plan and will not provide adequate safe transportation planning to the limits of the UGB. In these situations, authority is supported by Oregon Revised Statute, (ORS) Chapter 368. ORS chapter 368.016 provides for the County Engineer to take action in regards to local city streets at times when the city consents to the action. In this case, city ordinance does not provide adequate transportation design guidance, and both city and county agree that county standards should be applied. The result is that the County Engineer's evaluation of transportation requirements becomes the controlling authority.

ORS Ch. 368.039 provides that county has the authority to require design standards that "shall supersede and prevail over any specifications and standards for roads and streets that are set forth in a uniform fire code adopted by the State Fire Marshal, a municipal fire department or a county firefighting agency. " This clearly provides the County Engineer authority to require safe, effective public transportation in situations where otherwise inadequate or nonexistent options otherwise exist.

Tillamook County Ordinance \#55 references the Oregon Department of Transportation Standard Specifications for Highway Construction, The American Association of State Highway Transportation Officials Manual A Policy on Geometric Design of Highways and Streets and the Federal Highway Administrations Manual on Uniform Traffic Control Devices as adopted by the Oregon Department of Transportation. These documents become the controlling standards and specifications adopted by Tillamook County.

The section of Riverview Meadows Drive adjacent to North Fork Nehalem River Road represents little more than a single lane paved alignment and fails to meet any applicable AASHTO standard for lane width, shoulder width, adjacency of immovable obstructions, etc. In
this first section of roadway there are four private residences located at the very edge of the existing Right of Way line. Please note the aerial image below to assist in viewing the limited width of the existing roadway showing a single vehicle traveling through this section. This image provides evidence of the inadequate capacity of the existing roadway.

The Traffic Impact Study, (TIS), provided by the applicants suggest that the intersection at the end of this section of roadway contains adequate carrying capacity to support the full buildout of the Riverview Meadows development. The TIS suggests that there will be times when vehicles leaving the development will queue in this same section of roadway. It is the determination of the County Engineer that this creates an unsafe point of congestion even in normal daily traffic. With commuters queued to enter the North Fork County Road, there is no safe way for vehicular movement by adjacent land owners to enter or leave the existing roadway.

Public Works finds additional issues with the TIS. Section 160(1)(a). identifies that the standard to be used is "A Policy on Geometric Design on Highway and Streets" (referred hereinafter as the Green Book). The "Riverview Meadows Traffic Impact Study" dated August 12. 2022 (hereinafter referred to as the Study) used these standards. The Intersection Sight Distance section of the report identifies that the standards are not met.

The Study reported " \ldots a minimum of 500 ft of intersection sight distance is generally desired in each direction for each point of access. However, horizontal curves in the site vicinity limit both the available sight lines and the approach speeds of vehicles at the limits of sight distance." The 500 ft distance listed is published sight distance using a Design Speed of 45 mph and passenger cars.

Per the Study: "For the existing site access on River View Meadows Lane, the available intersection sight distance was measured to be 428 feet to the north and 378 feet to the south."

The study uses a speed study to lower the acceptable sight distance. Please note the following excerpts from the Green Book:
"Posted speed limits, as a matter of policy, are not the highest speeds that might be used by drivers. Instead, such limits are usually set to approximate the $85^{\text {th }}$ percentile speed of traffic as determined by measuring the speeds of a sizeable sample of vehicles."
"Operating speed is the speed at which drivers are observed operating their vehicles during free-flow conditions. The $85^{\text {th }}$ percentile of the distribution of observed speeds is the most frequently used measure of the operating speed associated with a particular speed associated with a particular location or geometric feature. ."
"Design speed is the selected speed used to determine the various geometric design features of the roadway. The selected design speed should be a logical one with respect to the anticipated operating speed, topography, the adjacent land use, and the functional classification of the highway."

The Study states "Typically, the $85^{\text {th }}$ percentile speed is used for design." is not correct. However, the Study did identify that reducing the design speeds to match the $85^{\text {th }}$ percentile speed did not produce an acceptable sight distance. "Again, the available intersection sight distance was less than the desired intersection distance." The Study then deviates from utilizing the intersection sight distance standard and uses stopping sight distance and the $85^{\text {th }}$ percentile speed.

The proposed project does not meet the standard for Intersection Sight Distance. Please note $500-\mathrm{ft}$ is based on a Design Speed of 45 mph and passenger cars. The distance increases to $630-$ ft for single unit trucks.

In the River View Meadows Lane - Roadway Geometry section, the Study identifies that "...single-unit trucks, garbage trucks, and fire apparatus... require the full width of River View Meadows Lane for maneuvering in the vicinity of North Fork Road." It is not acceptable to place additional traffic on this road as the risk of collision increases.
The combination of the lack of sight distance and the above-described vehicle maneuvering issues in the vicinity of North Fork Road is not acceptable.

Based on the above, and in concurrence with the City of Nehalem, Tillamook County Public Works will require that a full developed, two-lane roadway built to county road standards shall be a requirement for approval of any future buildout of the Riverview Meadows residential development.

Please feel free to contact we directly with any questions.
Thank you,
Randal E. Newt

Ronald E. Newton, LSI
Eng. Tech. III, Tillamook County Public Works

Tillamook County, Oregon
10/20/2022 02:40:51 PM
DEED-ESMAT
2022-006452
$\$ 3000 \$ 1100 \$ 61.00 \$ 10.00 \cdot$ Total $=\$ 112.00$
Riverview Meadows Development LLC
23765 SE Highway 212
Damascus, OR 97089
 instrument was that the within instrument was received for record and recorded in the County of Tillamook, State of Oreaon.
Tassi O'Neil, Tillamook County Clerk

Send Tax Statement to:
NO CHANGE
Space above reserved for recording label

Easement

Know by all persons present, that Donald E. Dillard ("Grantor"), for consideration of the mutual promises exchanged herein and other good and valuable consideration exchanged with Riverview Meadows Development LLC, ("Grantee"), which Grantor hereby acknowledges, does hereby grant a non-exclusive easement for public access over, under and across the real property described herein, and for public and/or private utilities, for the benefit of the real property as described herein, all being more particularly described herein.

EASEMENT RECITALS

A. Grantor is the owner of the real property ("Parcel 1") being legally described as:

Tract A, RIVERVIEW MEADOWS PHASE I, in the County of Tillamook, State of Oregon, recorded July 26, 2010 in Plat Cabinet B1142-0, Tillamook County Records.
B. Grantee is the owner of the real property ("Parcel 2") being legally described as follows:

Tract B, RIVERVIEW MEADOWS PHASE I, situated in the Northwest quarter of Section 23, Township 3 North, Range 10 West, Willamette Meridian, County of Tillamook, State of Oregon, recorded July 26, 2010 as Instrument No. 2010-004288, Tillamook County Records.
C. Parcel 1 and Parcel 2 are adjacent to each other.
D. It is the intent of the parties herein named to create a non-exclusive, public access, and permanent right to enter, re-enter, and use Parcel 1, subject to conditions as set forth herein, for the benefit of Grantee's Parcel 2, and the general public.

1 of 4 - Easement

E. The non-exclusive easement will be used for public and private ingress and egress purposes by the general public, by Grantee, and by Grantee's successors in ownership of Grantee's Parcel 2.
F. Additionally, the non-exclusive easement for public access and public and/or private utilities, shall also include the right to lay, construct, widen and maintain streets, water mains, sewer mains, storm drainage lines, and all related appurtenances, to be constructed and located on, across, under or over Parcel 1.
G. The parties agree that any unknown defect in the above Easement Area due to inaccuracy will not hinder the intent of the parties.

IT IS FURTHER UNDERSTOOD and AGREED:

1. The foregoing Easement Recitals paragraphs are contractual and not merely recitals, and are incorporated by this reference.
2. The rights and obligations of all the easements herein shall run with and be appurtenant to those parcels of land as described, and shall not be personal to any person, except that the obligation to pay for the costs and expenses (for costs and expenses incurred while a person was an owner) shall be personal to the owners of the described parcels, as well as run with the described parcels.
3. Grantee and the general public shall have a non-exclusive, public access, and permanent right to enter, re-enter, and use a portion of Parcel 1 being legally described in the attached EXHIBIT "A", and pictorially described in the attached EXHIBIT "B", subject to conditions as set forth herein, for the benefit of Grantee's Parcel 2 and the general public. The easement shall include the right of the Grantor or Grantee to reasonably improve the surface of the easement area herein described; costs of any improvements to the easement area shall be borne by Grantee, their successors and assigns. Any improvement to the easement area shall be in compliance with all applicable local, state, and federal law. In the event such applicable local, state, and federal law shall require broader access to Parcel 1 for the purposes set forth herein, then the portion of Parcel 1 being legally described in the attached EXHIBIT "A", and pictorially described in the attached EXHIBIT "B", shall increase in scope, and shall be geographically or otherwise broadened to meet such applicable local, state, and federal law without affecting the validity of the easement granted herein.
4. Grantee shall have a non-exclusive easement for public access and public and/or private utilities, to include the right to lay, construct, and maintain streets, water mains, sewer mains, storm drainage lines, and all related appurtenances, to be constructed and located on, across, under or over Parcel 1. Any improvement to the easement area shall be in compliance with all applicable local, state, and federal law.
5. Grantor agrees that the consideration recited herein is just compensation for the property rights herein granted. Specifically, Grantor has granted this easement in consideration of an Easement Agreement dated September 20, 2022 wherein Grantee agrees to pay Grantor the sum of $\$ 25,000.00$ upon execution of this Agreement, and Grantee agrees, if practicable, to install two access gates for security purposes. If it is not practicable to install the access gates, Grantee shall pay Grantor an additional sum of $\$ 25,000.00$.
6. Grantor represents and warrants that Grantor has the authority to grant the easement and that the easement area is free from all liens and encumbrances that would materially affect the easement grant, and that they will defend this easement grant against all lawful claims and demands of all persons whomsoever with respect to any liens or encumbrances that would materially affect the easement grant.
[SIGNATURE PAGE FOLLOWS]

The parties above named have hereunto set their hands this 19 day of October, 2022.

GRANTOR:

GRANTEE:
Riverview Meadows Development LLC

Carey Sheldon, President of Sheldon Development Inc., Member

STATE OF OREGON

County of TILLAMEOK
This instrument was acknowledged before me on UCTOBRN 19,2022, by Donald E. Dillard, the above-named Grantor.

Notary Public for Oregon
My Commission expires \qquad
waskingtonsin
STATE OF OREGON
County of \qquad
This instrument was acknowledged before me on October 18 2022, by Carey Sheldon, President of Sheldon Development Inc., Member of the above-named Grantee.

Notary Public for Oregon Washy ingter
My Commission expires: \qquad

EXHIBIT "A"
Legal Description over a portion of Tract 'A', "Riverview Meadows Phase 1"

A TRACT OF LAND SITUATED IN THE NW $1 / 4$ OF SECTION 23, TOWNSHIP 3 NORTH, RANGE 10 WEST, W.M., SHOWN AS AN "EMERGENCY VEHICLE ACCESS EASEMENT" IN "RIVERVIEW MEADOWS PHASE 1", RECORDED AS DOCUMENT NUMBER 2010-4288, TILLAMOOK COUNTY PLAT RECORDS, BEING MORE PARTICULARLY DESCRIBED AS FOLLOWS:

Commencing at the Northwest corner of Tract 'A' of "Riverview Meadows Phase 1"; thence South $88^{\circ} 34^{\prime} 29^{\prime \prime}$ East, along the North line of said Tract 'A' of said "Riverview Meadows Phase 1", a distance of 531.12 feet, to the most Northeasterly corner of said Tract 'A' of said "Riverview Meadows Phase 1", said point also being the most Northwesterly corner of the right of way of Sunnyview Drive, as dedicated in said "Riverview Meadows Phase 1", said point also being the True Point of Beginning; thence South $01^{\circ} 25^{\prime} 31^{\prime \prime}$ West, along the West line of the said right of way of said Sunnyview Drive, a distance of 50.00 feet, to the Southwesterly corner of the said right of way of said Sunnyview Drive, said point also being on the North line of Lot 11 of said "Riverview Meadows Phase 1"; thence North $88^{\circ} 34^{\prime} 29^{\prime \prime}$ West, along the North line of said Lot 11 and the North line of Lot 10 of said "Riverview Meadows Phase 1 " and the westerly extension thereof, a distance of 245.17 feet, to a point of curvature, said point is the beginning of a curve that will be referred to as Curve 1 from hereon; thence along said Curve 1, an 86.29 foot radius tangent curve to the left, an arc distance of 155.19 feet through a central angle of $103^{\circ} 02^{\prime} 41^{\prime \prime}$ (chord bears South $39^{\circ} 54^{\prime} 11^{\prime \prime}$ West 135.10 feet) to a point of tangency, said point is the beginning of a line that will be referred to as Line 1 from hereon; thence along said Line 1, South $11^{\circ} 37^{\prime} 10^{\prime \prime}$ East, a distance of 272.73 feet, to an angle point; thence leaving said Line 1 , South $16^{\circ} 45^{\prime} 30^{\prime \prime}$ East, a distance of 23.52 feet more or less, to a point on the West line of said Tract "A' of said "Riverview Meadows Phase 1 ", said point being marked with a $5 / 8$ " iron rod with a yellow plastic cap marked "PLS 2351 "; thence North $36^{\circ} 55^{\prime} 01^{\prime \prime}$ " West, along the said West line of said Tract 'A' of said "Riverview Meadows Phase 1", a distance of 121.86 feet more or less, to a point that is 50 feet from, when measured at right angles to, the previously described Line 1 ; thence leaving the said West line of said Tract ' A ' of said "Riverview Meadows Phase 1", 50 feet from and parallel with said Line 1, North $11^{\circ} 37^{\prime} 10^{\prime \prime}$ West, a distance of 185.81 feet to a point of curvature; thence along a 136.29 foot radius tangent curve to the right, 50 feet from and parallel with said Curve 1, an arc distance of 245.11 feet through a central angle of $103^{\circ} 02^{\prime} 36^{\prime \prime \prime}$ (long chord bears North $39^{\circ} 54^{\prime} 08^{\prime \prime}$ East 213.39 feet), to a point on the said North line of said Tract 'A' of said "Riverview Meadows Phase 1"; thence South $88^{\circ} 34^{\prime} 29^{\prime \prime}$ East, along the said North line of said Tract 'A' of said "Riverview Meadows Phase 1", a distance of 245.17 feet, to the True Point of Beginning. Containing 32,711 square feet, more or less.

Basis of bearings for this description is from Document Number 2010-4288, Tillamook County Plat Records.

Affiliated: Professional Land Surveys of Oregon - American Congress of Surveying and Mapping

EXHIBIT "B"

SITUATED IN THE N.W. $1 / 4$ OF SECTION 23, TOWNSHIP 3 NORTH, RANGE 10 WEST, W.M., CITY OF NEHALEM, TILLAMOOK COUNTY OREGON OCTOBER 04, 2022 SCALE: $1^{\prime \prime}=80^{\prime}$

NW CORNER TRACT 'A'
"RIVERVIEW MEADOWS PHASE 1"
ASE $1^{\prime \prime}$

(1) ENTRANCE ROAD PROFILE

$$
\begin{aligned}
& \text { auver }
\end{aligned}
$$

[^5]Staton

1	101812022	UPDATEPROFILE AND DAANACE	JPM

[^0]: Scenario 1 Riverview Meadows 2:46 pm 08/11/2022 2025 Background AM Peak Hour MTA

[^1]: Scenario 2 Riverview Meadows 2:55 pm 08/11/2022 2025 Bkgd plus Site Trips PM Peak Hour MTA

[^2]: ${ }^{\text {a }}$ Minor-Street right turn volumes are reduced to account for the impact of right-turns on red.
 ${ }^{\mathrm{b}}$ Eighth-highest hour volumes are calculated as 5.65 percent of the expected daily traffic volume.
 ${ }^{\text {c }}$ This warrant should be used only after adequate trial of other alternatives has failed to solve traffic problems.

[^3]: ${ }^{a}$ Minor-Street right turn volumes are reduced to account for the impact of right-turns on red.
 ${ }^{\mathrm{b}}$ Eighth-highest hour volumes are calculated as 5.65 percent of the expected daily traffic volume.
 ${ }^{\text {c }}$ This warrant should be used only after adequate trial of other alternatives has failed to solve traffic problems.

[^4]: ${ }^{\text {a }}$ Minor-Street right turn volumes are reduced to account for the impact of right-turns on red.
 ${ }^{\mathrm{b}}$ Eighth-highest hour volumes are calculated as 5.65 percent of the expected daily traffic volume.
 ${ }^{\text {c }}$ This warrant should be used only after adequate trial of other alternatives has failed to solve traffic problems.

[^5]: MORGAN CIVIL
 ENGINEERING, INC.

